An Anti-glitch in the Magnetar 1E 2259+586

R. F. Archibald¹, V. M. Kaspi¹, C. -Y. Ng^{1,2}, K. N. Gourgouliatos ¹, D. Tsang¹, P. Scholz¹, A. P. Beardmore³, N. Gehrels⁴, & J. A. Kennea⁵

¹Department of Physics, McGill University

²Department of Physics, The University of Hong Kong

³Department of Physics and Astronomy, University of Leicester

⁴Astrophysics Science Division, NASA Goddard Space Flight Center

⁵Department of Astronomy and Astrophysics, Pennsylvania State University

High Energy Astrophysics Division, 2013

Magnetars

- Young, isolated neutron stars (a few thousand years old)
- High B-field pulsars (∼ 10¹⁴ G)
- X-ray luminosity can exceed spin-down power
- Outbursts with ~ 100 ms X-ray bursts, ~months long X-ray flux enhancements

Image: NASA/GSFC

See Thompson & Duncan 1995,6; Thompson et al. 2002; and Beloborodov 2009 for more on magnetars

Glitches

- Hundreds seen in radio pulsars (eg. Crab, Vela)
- All spin-up glitches

$$\bullet$$
 $\frac{\Delta \nu}{\nu} \sim 10^{-10} - 10^{-6}$

- Re-coupling of crustal superfluid and outer crust
- Magnetars have comparable glitches: $\frac{\Delta\nu}{\nu} \sim 10^{-7} 10^{-5}$
- Magnetar glitches can be accompanied by X-ray outbursts

See Espinoza et al., 2011 for more glitch statistics See Dib et al. 2008 for magnetar glitches

Swift Monitoring of 1E 2259+586

- Started observing with Swift in July 2011
- Continued from 16 years of monitoring with RXTE
- ∼ 7-s magnetar
- $\mathbf{B} = 5.9 \times 10^{13} \mathbf{G}$
- Two spin-up glitches in 2002, 2007

Swift Spacecraft

XMM image of CTB 109 (Sasaki et al.,2004)

Swift Monitoring of 1E 2259+586

Summary

- First anti-glitch seen in a pulsar
- Internal origin: differential rotation of the superfluid
- External origin: strong wind or sudden twist on the field lines
- In a twist model, expect gradual relaxing of $\dot{\nu}$: Not seen
- In a wind model, expect correlation between glitch epochs and X-ray flux: Not seen

