An Anti-glitch in the Magnetar 1E 2259+586

R. F. Archibald1, V. M. Kaspi1, C. -Y. Ng1,2, K. N. Gourgouliatos 1, D. Tsang1, P. Scholz1, A. P. Beardmore3, N. Gehrels4, & J. A. Kennea5

1Department of Physics, McGill University
2Department of Physics, The University of Hong Kong
3Department of Physics and Astronomy, University of Leicester
4Astrophysics Science Division, NASA Goddard Space Flight Center
5Department of Astronomy and Astrophysics, Pennsylvania State University

High Energy Astrophysics Division, 2013

Nature, in Press
Magnetars

- Young, isolated neutron stars (a few thousand years old)
- High B-field pulsars ($\sim 10^{14}$ G)
- X-ray luminosity can exceed spin-down power
- Outbursts with ~ 100 ms X-ray bursts, \simmonths long X-ray flux enhancements

See Thompson & Duncan 1995,6; Thompson et al. 2002; and Beloborodov 2009 for more on magnetars

Image: NASA/GSFC
Glitches

- Hundreds seen in radio pulsars (eg. Crab, Vela)
- All spin-up glitches
- $\frac{\Delta \nu}{\nu} \sim 10^{-10} - 10^{-6}$
- Re-coupling of crustal superfluid and outer crust
- Magnetars have comparable glitches: $\frac{\Delta \nu}{\nu} \sim 10^{-7} - 10^{-5}$
- Magnetar glitches can be accompanied by X-ray outbursts

See Espinoza et al., 2011 for more glitch statistics
See Dib et al. 2008 for magnetar glitches
Swift Monitoring of 1E 2259+586

- Started observing with Swift in July 2011
- Continued from 16 years of monitoring with RXTE
- \(B = 5.9 \times 10^{13} \) G
- Two spin-up glitches in 2002, 2007

See Kaspi et al., 2003 and Dib & Kaspi, in prep for prior 2259 activity.
Swift Monitoring of 1E 2259+586

Sudden Spin Down

Fermi GBM Detection
First anti-glitch seen in a pulsar
Internal origin: differential rotation of the superfluid
External origin: strong wind or sudden twist on the field lines
In a twist model, expect gradual relaxing of $\dot{\nu}$: Not seen
In a wind model, expect correlation between glitch epochs and X-ray flux: Not seen