The Imprint of the EBL in the gamma-ray Spectra of Blazars

By SINDYA N. BHANOO Published: November 2, 2012 Based on "Ackermann+12, Science, 338, 1190"

Marco Ajello¹, Anita Reimer², Rolf Buehler³ on behalf of the Fermi-LAT collaboration

¹UCB, ²Univ. Innsbruck, ³DESY

Most models predict an attenuation of >99% at z~1

The EBL leaves a unique redshift/energy dependent attenuation in the spectra of blazars

Predictions and Reality

Reality is far more complex due to the non-standard nature of blazars

So far only upper limits on the opacity were derived (Abdo+10, ApJ 723, 1082, Raue10, etc.)

Fermi observations

•First instrument to detect >500 sources above 10 GeV

•Advantages of Fermi:

- •Detects blazars up to high redshift
- •Fermi's bandpass gives unique handling on the `intrinsic' spectrum
- •Continue all-sky observations allow us to assess variability issues (none)

• We used the best 150 BL Lacs to measure the EBL

4yr >10GeV Map,

preliminary

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- We use 46months of P7V6 1-500 GeV data
- We define 3 redshift bins with 50 sources each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6

Space Telescope

• All BL Lacs are modeled with a *LogParabola* spectrum

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- We use 46months of P7V6 1-500 GeV data
- We define 3 redshift bins with 50 sources each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6

Gamma-ray Space Telescope

- All BL Lacs are modeled with a LogParabola spectrum
- We perform a combined fit where:
 - The spectra of all sources are fit independently
 - The spectra of all sources are modified by a common e^{-b T(E,z)} term

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- We use 46months of P7V6 1-500 GeV data
- We define 3 redshift bins with 50 sources each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6

Gamma-ray Space Telescope

- All BL Lacs are modeled with a LogParabola spectrum
- We perform a combined fit where:
 - The spectra of all sources are fit independently
 - The spectra of all sources are modified by a common $e^{-b T(E,z)}$ term
 - We evaluate 2 cases:
 - 1. Null hypothesis b=0 : there is no EBL
 - 2. Null hypothesis b=1 : the model predictions are correct

F

Significance of the Detection:

$$(E)_{absorbed} = F(E)_{\text{int rinsic}} \cdot e^{-b \tau_{\text{mod el}}}$$

- Best-fit versus null hypothesis $\underline{b=0}$: i.e. there is no EBL
- Significance of `Rejection' of a given EBL model:
 - Best-fit versus null hypothesis <u>b=1</u>: i.e. the EBL model predictions are correct
- We tested most of the EBL models: Franceschini08, Kneiske04, Kneiske&Dole10, Gilmore09-12, Dominguez11, Stecker+ etc
- Results (wrt to Franceschini+08 model):

Redshift	Significance	Scaling factor b	
z<0.2	~2	1.18(±0.94)	
0.2 <z<0.5< td=""><td>~2.7</td><td>0.82(±0.41)</td><td></td></z<0.5<>	~2.7	0.82(±0.41)	
0.5 <z<1.6< td=""><td>~5</td><td>1.29(±0.42)</td><td></td></z<1.6<>	~5	1.29(±0.42)	
0 <z<1.6< td=""><td>~6</td><td>1.02(±0.23)</td><td></td></z<1.6<>	~6	1.02(±0.23)	

- ~6σ detection of the EBL absorption feature
- 2. Data compatible with low-opacity models

Composite Likelihood Results: 2

- A significant steepening in the blazars' spectra is detected
- This is consistent with that expected by a 'minimal' EBL:
 - i.e. EBL at the level of galaxy counts
 - 4 models rejected above 3sigma
- All the non-rejected models yield a significance of detection of 5.6-5.9 σ
- The level of EBL is 3-4 times lower than our previous UL (Abdo+10, ApJ 723, 1082)
 FBL Detection Model Rejection

		Significance	Significance	
ckermann+12		\checkmark		\checkmark
Model ^a	Ref. ^b	Significance of b=0 Rejection ^c	$b^{ m d}$	Significance of b=1 Rejection ^e
Stecker et al. (2006) – fast evolution	(23)	4.6	0.10±0.02	17.1
Stecker et al. (2006) – baseline	(23)	4.6	$0.12{\pm}0.03$	15.1
Kneiske et al. (2004) – high UV	(22)	5.1	$0.37 {\pm} 0.08$	5.9
Kneiske et al. (2004) – best fit	(22)	5.8	$0.53{\pm}0.12$	3.2
Gilmore et al. (2012) – fiducial	(27)	5.6	0.67 ± 0.14	1.9
Primack et al. (2005)	(56)	5.5	$0.77 {\pm} 0.15$	1.2
Dominguez et al. (2011)	(25)	5.9	1.02 ± 0.23	1.1
Finke et al. (2010) – model C	(24)	5.8	0.86 ± 0.23	1.0
Franceschini et al. (2008)	(7)	5.9	1.02 ± 0.23	0.9
Gilmore et al. (2012) – fixed	(27)	5.8	1.02 ± 0.22	0.7
Kneiske & Dole (2010)	(26)	5.7	0.90±0.19	0.6
Gilmore et al. (2009) – fiducial	(2)	5.8	0.99 ± 0.22	0.6

Measurement of Tau with Energy and Redshift

- We use the composite likelihood in small energy bins to measure the collective deviation of the observed spectra from the intrinsic ones
- The cut-off moves in z and Energy exactly as expected for EBL absorption (for low opacity models)

Measurement of Tau with Energy and Redshift

- We use the composite likelihood in small energy bins to measure the collective deviation of the observed spectra from the intrinsic ones
- The cut-off moves in z and energy as expected for EBL absorption (for low opacity models)
- It is difficult to explain this attenuation with an intrinsic property of BL Lacs
 - 1. BL Lacs required to evolve across the z=0.2 barrier
 - 2. Attenuation change with energy and redshift cannot be explained by an intrinsic cut-off that changes from source to source because of redshift and blazar sequence effects

- Analysis is fully validated with simulations
- Results are robust against change of IRF/dataset
 - Systematic of $\sim 10\%$ on τ_{yy} from IRF
- Results are confirmed when treating the classes independently:
 - HSPs dominate the signal $(TS \sim 25)$
 - ISPs contribute a little (TS~10)
 - LSPs too soft
- Results do not depend on highest-z sources
- Results are robust against inclusion/exclusion of most variable sources
- Results are only weakly dependent on the accuracy of redshifts (i.e. if some redshifts are lower limits)
- The residual ~30 BL Lacs contribute a TS~3.5
- Results confirmed when decreasing dramatically E_{crit}

• Light of Pop-III stars increase the opacity w.r.t the one of pop-I and II

• Extremely large contr. of pop-III stars ruled out by Aharonian+06

• Light of Pop-III stars increase the opacity w.r.t the one of pop-I and II

- Extremely large contr. of pop-III stars ruled out by Aharonian+06
- Our measurement constrains the peak SFR of massive stars to be z>10 and have $<0.5M_{sun}~yr^{-1}~Mpc^{-3}$

• Light of Pop-III stars increase the opacity w.r.t the one of pop-I and II

- Large improvement going to higher redshift: current sample has >600 sources up to z~3 -> Use GRBs to get to z~4 !!
- Sample directly the EBL at the peak of the star formation activity

- *Fermi* performed a measurement of the γ-ray opacity
- The measurement is in good agreement with recent EBL models that predict a minimal EBL based on resolved galaxy counts
- The opacity is a factor >3 smaller than the previous LAT upper limit
- A LOT more to come, stay tuned
 - EBL measurement at z~0 using GeV-TeV data (Dominguez+12)
 - EBL measurement at z~O using H.E.S.S data (see poster 3.5 by B. Giebels)

<u>Cosmic Conspiracy Disclaimer</u>: Our result relies on the assumption that there is no 'conspiracy' in the nature of BL Lacs (or HSPs) that brings them to evolve in a way that mimics EBL absorption from z~0 to z~1.6

The End

• Use FSRQs to derive (at least) an upper limit to $\tau_{\gamma\gamma}$ up to $z\sim3$

 Use the ~200 BL Lacs that now have redshift !

 The signal is distributed over all the sources, with each source contributing ~0.5 to the TS

Figure S3 Increase in the TS value of the (renormalized) EBL model of (7) produced in the joint-likelihood fit (to the $0.5 \le z < 1.6$ interval) while adding one source at a time. The sources have been sorted in redshift (from lowest to highest). The dashed line shows the best-fit linear increase of the TS with the number of sources. The inset shows the best-fit value of the renormalization parameter *b* applied to the opacity predicted by (7) (see text for details).

- Cascade emission of TeV γ rays is reprocessed in the GeV energy range
- It may represent a substantial fraction of the GeV spectrum, depending on:
 - Intensity of the EBL
 - Intensity of the IGMF and its coherent length
 - Position of the high-energy SED peak
- For IGMF of ≥10⁻¹⁵ G (Neronov&Vovk10, Tavecchio11) the cascade component is greatly suppressed
- For IC peaks <10TeV (i.e. all but extreme HSPs) the cascade component is not expected to be large

21

Ultra High Energy Cosmic Rays

- Blazars might be accelerating CRs as well
- CRs would travel further and interact with the EBL/CMB to generate γ rays
- γ-rays would then suffer EBL absorption

• Intense IGMF would deflect cascades out of line-of-sight

 Analysis validated using Monte Carlo simulations of physical SEDs of blazars based on Fermi observations

• We look for the collective deviation of the spectra of blazars from their *intrinsic* spectra

Source selection

- We select 'non-variable' BL Lacs from 2LAC solely on the 3-10 GeV detection significance
- Advantages:
 - Hard spectrum sources
 - Weak, if any, external photon fields
- Disadvantages:
 - Only ~50% of *Fermi* BL Lacs have redshift in 2LAC
 - But see the talk of M. Shaw for the rest!

Analysis details

- 46months of data (till June 1st)
- P7SOURCE_V6 or P7CLEAN_V6
- zenith angle < 100deg
- ROI radius = 15deg
- Standard P7 diffuse models
- Energy range 1 500 GeV

- Absorption of gamma rays on the photons of the BLR/disk might show a redshift dependence due to the accretion history of the Universe (Reimer07)
- Most of the signal is in HSPs
- However:
 - If the emission region is far from the core, then no absorption is expected

- Delicate problem:
 - Ideally we would like to select a population:
 - Whose properties do not change with redshift
 - · Is not affected by intrinsic absorption of photons on the BLR/disk
 - Have hard spectra to probe the EBL
- Such selection is impossible:
 - Blazar types change with redshift
 - HSP -> ISP -> LSP
- FSRQs are soft, have intense photon fields, are very variable:
 - No ideal candidates
- We select BL Lacs:
 - Advantages:
 - Have hard spectrum
 - We think they might not have strong photon fields
 - Disadvantages:
 - Type evolves with z
 - 50% in 2LAC do not have z

EBL photons extinguish extragalactic gamma rays.

 $\gamma_{ebl} + \gamma_{\gamma-ray} \rightarrow e^- + e^+$

Gamma rays we see are attenuated by: $F_{obs} = F_{int} \exp[-\tau_{\gamma\gamma}(E, z)].$

We want to constrain the EBL models [$\tau_{\gamma\gamma}$ (E,z)] based on γ -ray observations of blazars.

 EBL should cause an energydependent suppression of the HE flux which increases for larger redshifts

Reality is far more complex due to the non-standard nature of blazars

Is the LogParabola good for the intrinsic spec. ?

- Answer: We believe it is good over the chosen energy range
 - For z<0.2, EBL absorption becomes important only for E>150GeV

- We define 3 redshift bins with 50 members each:
 - z= 0-0.2, 0.2-0.5, 0.5 -1.6
- All BL Lacs are modeled with a *LogParabola* spectrum
- 3 Steps Procedure:
 - 1. fit each ROI (1-500 GeV) to optimize all components
 - 2. re-fit only up to the energy for which EBL absorption is negligible (we call this E_{crit})
 - 1. This step is needed to determine the properties of the intrinsic spectrum
 - 3. <u>Combine the likelihoods of each ROI</u> (for a z-bin) and fit "b"
 - We evaluate 2 cases:

$$F(E)_{absorbed} = F(E)_{int \ rinsic} \cdot e^{-b \cdot \tau_{mod \ el}}$$

- 1. Null hypothesis b=0 : there is no EBL
- 2. Null hypothesis b=1 : the model prediction are correct

 We look for the collective deviation of the spectra of blazars from their intrinsic spectra

Source selection

- We select 'non-variable' BL Lacs from 2LAC solely on the 3-10 GeV detection significance
- Advantages:
 - Hard spectrum sources
 - Weak, if any, external photon fields
- Disadvantages:
 - Only ~50% of *Fermi* BL Lacs have redshift in 2LAC
 - But see the talk of M. Shaw for the rest!

Analysis details

- 46months of data (till June 1st)
- P7SOURCE_V6 or P7CLEAN_V6
- zenith angle < 100deg
- ROI radius = 15deg
- Standard P7 diffuse models
- Energy range 1 500 GeV

Sensitivity to the light of the First Stars

Sensitivity to the light of the First Stars

- Large contr. of pop-III stars ruled out by Aharonian+06
- Our measurement constrains the peak SFR of massive stars to be z>10 and have <0.5M_{sun} yr⁻¹ Mpc⁻³

Sensitivity to the light of the First Stars

