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s, ermi Attenuation due to the EBL
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Blazars’ spectra are type-dependent
and the composition of the blazar
sample evolves with redshift

s, ermi Predictions and Reality
o o Tars
Reality is far more complex due to the non-standard nature of blazars
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< ermi Fermi observations

4yr >10GeV Map,
preliminary

*First instrument to detect >500 sources above 10 Gel/

*Advantages of Fermi:
Detects blazars up to high redshift
«Fermi's bandpass gives unigue handling on the ’intrinsic’ spectrum
Continue all-sky observations allow us to assess variability issues (none)

* We used the best 150 BL Lacs to measure the EBL



s crmi Analysis Procedure

amma-ray

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

We use 46months of P7V6 1-500 GeV data

We define 3 redshift bins with 50 sources
each:

- z=0-0.2,0.2-05,05-16

All BL Lacs are modeled with a LogParabola
spectrum
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- Analysis Procedure

amma-ray

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

10'3 T I,II,IIII‘”yI T T TTT] T T T T T T T TTTHY

prelimina

We use 46months of P7V6 1-500 GeV data
Fit to 'unabsorbed' data
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We define 3 redshift bins with 50 sources
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We perform a combined fit where:

- The spectra of all sources are fit R
independently 10

- The spectra of all sources are modified
by a common e €2 term
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s crmi Analysis Procedure

amma-ray

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

We use 46months of P7V6 1-500 GeV data

We define 3 redshift bins with 50 sources
each:

- z=0-0.2,0.2-05,05-16

All BL Lacs are modeled with a LogParabola
spectrum

We perform a combined fit where:

- The spectra of all sources are fit
independently

- The spectra of all sources are modified
by a common e €2 term

We evaluate 2 cases:
1. Null hypothesis b=0 : there is no EBL

2. Null hypothesis b=1 : the model
predictions are correct
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‘s ermi Composite Likelihood Results: 1
o ST
Significance of the Detection: F(E), . =F(E), . -¢ "%

- Best-fit versus null hypothesis b=0: i.e. there is no EBL

Significance of " Rejection' of a given EBL model:

- Best-fit versus null hypothesis b=1: i.e. the EBL model
predictions are correct

We tested most of the EBL models: Franceschinios, kneiske04,
Kneiske&DolelO, Gilmore09-12, Dominguezl1l, Stecker+ etc

Results (wrt to Franceschini+08 model):

Redshift Significance Scaling factor b 1. ~60 detection of the
2<0.2 ~2 118(+0.94) EBL absorption feature
0.2¢<2<0.5 ~2.7 0.82(:0.41) 2. Data compatible with
0.5<z<1.6 ~h 1.29(x0.42) low-opacity models
O<z<1.6 ~6 1.02(x0.23) 8
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Composite Likelihood Results: 2
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LAT best fit -- 1 sigma

LAT best fit -- 2 sigma
Franceschini et al. 2008

Finke et al. 2010 — model C
Stecker et al. 2012 -- High Opacity
Stecker et al. 2012 -- Low Opacity
Kneiske et al. 2004 -- highUV
Kneiske et al. 2004 -- best fit
Kneiske & Dole 2010

Dominguez et al. 2011
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s, ermi Composite Likelihood Results: 2

» A significant steepening in the blazars' spectra is detected
* This is consistent with that expected by a ‘'minimal’ EBL:

- i.e. EBL at the level of galaxy counts

- 4 models rejected above 3sigma

»  All the non-rejected models yield a significance of detection of
5.6-59 0

+  The level of EBL is 3-4 times lower than our previous UL (Abdo+10,
ApJ 723, 1082)

EBL Detection Model Rejection
Significance Significance
— - —T ] : . —
10 Fi':mwm 'ﬁ :f : | ACker'mGnn“'lZ
. ecke 12 - Hi paci |
Model* Ref? Significance of b=0 Rejection® bd Significance of b=1 Rejection®
Stecker et al. (2006) - fast evolution  (23) 4.6 0.100.02 17.1
= | Stecker et al. (2006) — baseline 23 4.6 0.12+0.03 15.1
v 1 B Kneiske et al. (2004) — high UV (22) 5.1 0.37+0.08 59
] Kneiske et al. (2004) - best fit (22) 58 0.53+0.12 32
] Gilmore et al. (2012) - fiducial (27) 56 0.67+0.14 19
| Primack et al. (2005) (56) 55 0.77£0.15 12
2-1.0 Dominguez et al. (2011) 25 59 1.02+0.23 1.1
10" ' — Finke et al. (2010) — model C (24) 58 0.86+0.23 10
= 3 Franceschini et al. (2008) 7) 59 1.02+0.23 09
= Gilmore et al. (2012) - fixed (27) 58 1.02+0.22 07
102 Kneiske & Dole (2010) (26) 5.1 0.90+0.19 0.6
E G
nergy [GeV] Gilmore et al. (2009) - fiducial ) 58 0.99£0.22 06
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<>omi Measurement of Tau with Energy and Redshift

*  We use the composite likelihood in small
energy bins to measure the collective
deviation of the observed spectra from
the intrinsic ones

*  The cut-off moves in z and Energy
exactly as expected for EBL absorption
(for low opacity models)
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Kneiske et al. 2004 -- highUV

L wimimin Kneiske et al. 2004 -- best fit
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s ermi

Gamma-ray
/ Spa(e Telescope
[ ]

We use the composite likelihood in small
energy bins tfo measure the collective
deviation of the observed spectra from
the intrinsic ones

The cut-off moves in z and energy as
expected for EBL absorption (for low
opacity models)

It is difficult o explain this attenuation
with an intrinsic property of BL Lacs

1. BL Lacs required to evolve across the
z=0.2 barrier

2. Attenuation change with energy and
redshift cannot be explained by an
intrinsic cut-off that changes from
source to source because of redshift
and blazar sequence effects
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Measurement of Tau with Energy and Redshift
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r 2<0.2
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@, ermi Our Tests

Gdr" ma-ray

/ Space Telescope

Analysis is fully validated with simulations

Results are robust against change of IRF/dataset
- Systematic of ~10% on 1,, from IRF

Results are confirmed when treating the classes independently:
- HSPs dominate the signal (TS~25)
- ISPs contribute a little (TS~10)
- LSPs too soft

Results do not depend on highest-z sources

Results are robust against inclusion/exclusion of most variable sources

Results are only weakly dependent on the accuracy of redshifts (i.e. if some
redshifts are lower limits)

The residual ~30 BL Lacs contribute a TS~3.5

Results confirmed when decreasing dramatically E_.;
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Stellar Archeology

Fermi best fit -- 1 sigma
Fermi best fit -- 2 sigma

Pop-lll peak SFR at z=8 (Raue et al. 2009)
Pop-lll peak SFR at z=10 (Raue et al. 2009)
Pop-l/ll + Pop-lil (peak z=8)
Pop-l/ll + Pop-lll (peak z=10)
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Stellar Archeology

Light of Pop-IIT stars increase the opacity w.r.t the one of pop-I and IT
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Minimal pop-/ll SFR level (Franceschini et al. 2008)
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Pop-lll peak SFR at z=10 (Raue et al. 2009)
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Our measurement constrains the peak SFR of massive stars to be z>10 and

have <0.5M,,, yr! Mpc-3
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Large improvement going to higher redshift: current sample has >600
sources up to z~3 -> Use GRBs to get to z~4 Il

Sample directly the EBL at the peak of the star formation activity
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<o ermi Conclusions

- Fermi performed a measurement of the y-ray opacity

- The measurement is in good agreement with recent EBL models
that predict a minimal EBL based on resolved galaxy counts

- The opacity is a factor >3 smaller than the previous LAT upper
limit

- A LOT more to come, stay tuned
- EBL measurement at z~0 using GeV-TeV data (Dominguez+12)
- EBL measurement at z~0 using H.E.S.S data (see poster 3.5 by B. Giebels)

Cosmic Conspiracy Disclavmer: Our result relies on the assumption that there is no ‘conspiracy’ in the

nature of BL Lacs (or HSPs) that brings them to evolve in a way that mimics EBL absorption from z~0 to z~1.6
17




The End
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< ermi Bright Future

+ Use FSRQs to derive (at least) + Use the ~200 BL Lacs that now

an upper limit to = , , up to have redshift |
z~3
L I L B R B L R
i Shaw+12, submitted
100 Archival Reshifts Median = 0.23
I - Spectro Redshifts Median = 0.33
Galaxy Limits Median = 0.41
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< ermi Linear Increase of the TS

+ The signal is distributed over all the sources, with each source
contributing ~0.5 to the TS

- T L] L] 1 I T L] T 1 I T T T T I T T T T I T T T T I ]
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20 0
Number of Sources

Figure S3 Increase in the TS value of the (renormalized) EBL model of (7) produced in the
joint-likelihood fit (to the 0.5<z<1.6 interval) while adding one source at a time. The sources
have been sorted in redshift (from lowest to highest). The dashed line shows the best-fit lin-
ear increase of the TS with the number of sources. The inset shows the best-fit value of the
renormalization parameter b applied to the opacity predicted by (7) (see text for details).
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< ermi Cascades and IGMF

»  Cascade emission of TeV vy rays is reprocessed in the GeV energy range
It may represent a substantial fraction of the GeV spectrum, depending on:
- Intensity of the EBL
- Intensity of the IGMF and its coherent length
- Position of the high-energy SED peak

- For IGMF of 210156 (Neronov&Vovkl0, Tavecchioll) the cascade
component is greatly suppressed

+  For IC peaks <10TeV (i.e. all but extreme HSPs) the cascade component is
not expected to be large
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Ultra High Energy Cosmic Rays
o Soce Tescone
Blazars might be accelerating CRs as lazar (@)
well / \
Essey & Kusekno
CRs would travel further and (2010) Astroperkce UHECRs;
interact with the EBL/CMB to T Prolons &
generate vy rays £BL photon E> 10" eV
\‘ EBL
0 «~ photon
y-rays would then suffer EBL 1\ .
absorption ",1
l’J" )'e\ CMB
TeV y-rays | photon
+  Intense IGMF would deflect
cascades out of line-of-sight
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<, ermi Simulations Results

* Analysis validated using Monte Carlo simulations of physical
SEDs of blazars based on Fermi observations
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s, ermi Our Approach -- Analysis

We look for the collective deviation of the spectra of blazars from their intrinsic
spectra

Source selection

We select 'non-variable' BL Lacs from 2LAC solely on the 3-10 GeV detection
significance
Advantages:

- Hard spectrum sources

- Weak, if any, external photon fields
Disadvantages:

- Only ~50% of Fermi BL Lacs have redshift in 2LAC

* But see the talk of M. Shaw for the rest |

Analysis details
« 46months of data (till June 1s%)
e P7SOURCE_V6 or P7CLEAN_V6
«  zenith angle < 100deg
* ROT radius = 15deg
«  Standard P7 diffuse models
« Energy range 1 - 500 GeV

24



s, ermi Intrinsic Absorption

amma-ray

Absorption of gamma rays on the photons of the BLR/disk might
show a redshift dependence due to the accretion history of the
Universe (ReimerQ7)

*  Most of the signal is in HSPs
However:

- If the emission region is far from the core, then no
absorption is expected

3
300GeV]

1 070,0;,\_{,:

=

?
Reimer07 M=10°M. 1

0.1 1.0 10.0
redshift z 25
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s, ermi Source selection

Gamma-ray

/ Space Tele%rope

Delicate problem:
- Ideally we would like to select a population:
* Whose properties do not change with redshift
- Is not affected by intrinsic absorption of photons on the BLR/disk
* Have hard spectra to probe the EBL
Such selection is impossible:
- Blazar types change with redshift
« HSP -> ISP -> LSP
FSRQs are soft, have intense photon fields, are very variable:
- No ideal candidates

We select BL Lacs:
- Advantages:
* Have hard spectrum
* We think they might not have strong photon fields

- Disadvantages:

+ Type evolves with z
* 50% in 2LAC do not have z

26



s, ermi EBL and Gamma Rays

amma-ray

Y-Tay source .‘

EBL photons extinguish
extragalactic gamma rays.
\
Yebl + Yy-ray —e+er h
EBL n
photo v rays
Gamma rays we see are attenuated by: \v
Fos = Fincexpl- T,,(E, 2)]. oter ll
pair

We want to constrain the EBL models [ Ty
(E,z) ] based on y-ray observations of
blazars.

Courtesy
J. Finke




Predictions and Reality

average f(E > 10 GeV)/f(E > 1GeV)

Reality 1s far more complex

EBL should cause an energy- due to the non-standard nature

dependent suppression of the of blazars
HE flux which increases for pru——
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<«scmi Is the LogParabola good for the intrinsic spec. ?
/’ S pace T ele5(0P*  —————————————————————————————————————
- Answer: We believe it is good over the chosen energy range
g gy rang

1. For z<0.2, EBL absorption becomes important only for
E>150GeV

Evidences *E .—® E
H . = | /f'?- ]
* Fit to GeV - TeV: OK > 3 S s
* Residuals to z<0.2 fit: flat § b ° $3
M - Preliminary Abdo+11, ApJ, 736, 131
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s ermi Analysis Procedure

We define 3 redshift bins with 50 members each:
- 7z=0-0.2,0.2-05,05-16

All BL Lacs are modeled with a LogParabola spectrum

3 Steps Procedure:
1. fit each ROI (1-500 GeV) to optimize all components

2. re-fit only up to the energy for which EBL absorption is
negligible (we call this E_.;;)

1. This step is needed to determine the properties of the
Intrinsic spectrum

3. Combine the likelihoods of each ROT (for a z-bin) and fit "b"

We evaluate 2 cases: F(E) ipsorvea = F(E)
1. Null hypothesis b=0 : there is no EBL
2. Null hypothesis b=1 : the model prediction are correct

int rinsic

. e—b*rmo

d el
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< ermi Our Approach -- Analysis
o Swoce Teesco
- We l;)ok for the collective deviation of the spectra of blazars from their intrinsic
spectra

Source selection

We select 'non-variable’ BL Lacs from 2LAC solely on the 3-10 GeV detection
significance
Advantages:

- Hard spectrum sources

- Weak, if any, external photon fields
Disadvantages:

- Only ~50% of Fermi BL Lacs have redshift in 2LAC

* But see the talk of M. Shaw for the rest |

Analysis details
«  46months of data (till June 1s%)
« P7SOURCE_V6 or P7CLEAN_V6
« zenith angle < 100deg
* ROTI radius = 15deg
«  Standard P7 diffuse models
« Energy range 1 - 500 GeV
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First Stars and Reionization Era

|:] Fermi best fit -- 1 sigma o
T
‘ The Big Bang/Inflation 10 — ] Fermibestfit--2sigma p ]
Time since the - = = ——  Minimal pop-//ll SFR level (Franceschini et al. 2008) - -~ — -]
Big Bang (years) Universe filled with - Pop-lll peak SFR at z=8 (Raue et al. 2009) /// - o 4
ionized gas: [ ————  Pop-lil peak SFR at z=10 (Raue et al. 2009) 3
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First Stars and Reionization Era

Time since the
Big Bang (years)

~ 380 Thousand

~400 Million

~ 1 Billion

~ 9 billion

~13.7 Billion

Epoch of Reionization

Today: Astronomers look back and understand

The Big Bang/Inflation

Universe filled with
ionized gas:
fully opaque

Universe becomes
neutral and transparent

Galaxies and Quasers
begin to form - starting
reionization.

Reionization complete
~ 10% opacity

Galaxies evolve

Dark Energy begins
to accelerate the
expansion of space

Our Solar System
forms

- T
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>
70 1=
=3 3
= =
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'g —
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w
w
10'E

Raue+09

0 5 10 15 20 25
Redshift z

Large contr. of pop-IITI stars ruled out
by Aharonian+06

Our measurement constrains the peak
SFR of massive stars to be z>10 and have
<0.5M,, yr* Mpc-3
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First Stars and Reionization Era

: The Big Bang/Inflation
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Today: Astronomers look back and understand

34



