The role of galaxy merging in the life of massive galaxies

Allison Man
(ESO Garching)

+ Sune Toft, Andrew Zirm

IAU Focus Meeting 14, 12th August 2015, Honolulu
Finding galaxy mergers — why and how?
Why study galaxy mergers?

Galaxy merging is...

- the backbone of LCDM cosmology
- related to the most spectacular phenomena in the Universe

Enhanced star formation
- de Propris+05; Engel+10; Kartaltepe +10; Patton+11, +13

Active galactic nuclei
- Treister+12; Ellison+13

Disks → elliptical
- Toomre & Toomre 72; Barnes & Hernquist 96; Hopkins+10

Credit: Hooper & Wolf @ WISC

Allison Man, ESO, arXiv: 1410.3479
Finding galaxy mergers

1. Morphologically disturbed galaxies
 - Visual classification of merger stages
 - Kartaltepe+10, +12, +14; Hung+13
 - CAS – Concentration, asymmetry & clumpiness
 - Conselice+03
 - Gini-M_{20}
 - Lotz+04

Credit: HST Great Observatories of All-sky LIRG Survey (GOALS)

Allison Man, ESO, arXiv: 1410.3479
Finding galaxy mergers

Morphologically disturbed galaxies

Visual classification of merger stages
- Kartaltepe+10, +12, +14; Hung+13

CAS – Concentration, asymmetry & clumpiness
- Conselice+03

Gini-M
- Lotz+04

Allison Man, ESO, arXiv: 1410.3479

What z~2 galaxies look like...
- Lower surface brightness
- Coarser resolution

Credit: Kartaltepe+14, HST/WFC3 CANDELS

Credit: HST Great Observatories of All-sky LIRG Survey (GOALS)

Allison Man, ESO, arXiv: 1410.3479
2. Galaxy pairs

- Within projected separation threshold (e.g. 30 kpc/h)
- Consistent line-of-sight distance
 - If no redshift info: statistical correction
 - Photometric redshift
 - Spectroscopic redshift
- Merger fraction / Timescale = Merger rate

Zepf & Koo 89; Le Fevre+00, Patton+00, 08; Lin+04, 08; de Propris+05, Kartaltepe+07; Ryan+08; Bluck+09; Bundy+09; de Ravel+09; Robaina+10; Williams+11; Xu+12; Lopez-Sanjuan+11, +12, +13; Man+12, +14; Newman+12; Xu+12; Tasca+14

Allison Man, ESO, arXiv: 1410.3479
Pros & Cons of merger selection

<table>
<thead>
<tr>
<th></th>
<th>+++</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological classification</td>
<td>- Visual \rightarrow secure signs of interaction</td>
<td>- Incompleteness (resolution, sensitivity, star-forming regions vs clumps)</td>
</tr>
<tr>
<td>Galaxy pairs</td>
<td>- Less dependent on imaging resolution & depth \rightarrow push to higher z</td>
<td>- Fly-by fraction not well-quantified</td>
</tr>
</tbody>
</table>
Pros & Cons of merger selection

<table>
<thead>
<tr>
<th>Morphological classification</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Visual à secure signs of interaction</td>
<td>- Incompleteness (resolution, sensitivity, star-forming regions vs clumps)</td>
</tr>
</tbody>
</table>

Galaxy pairs

- Less dependent on imaging resolution & depth à push to higher z
- Fly-by fraction not well-quantified

Which one to use?

- **Galaxy pairs** → better for galaxy merger rate measurements
- **Morphological classification** → better for measuring merger fraction of AGN / starburst / favorite population

Allison Man, ESO, arXiv: 1410.3479
Measuring galaxy merger rate at z=0-3 w/ galaxy pairs

Allison Man, ESO, arXiv: 1410.3479
Lotz+11 find consistency across observations & theoretical predictions up to $z=1.5$ if parent sample are selected the same way.

Major merger rate (Lotz+11)

- Observations
- Theoretical predictions

Allison Man, ESO, arXiv: 1410.3479
Discrepant merger fractions at $z \sim 2$

- **Increase strongly with z**
- **No evolution with z**
- **Decrease with z**

Based on different data (HST vs ground-based) & selection (H-band flux ratio vs stellar mass ratio)

Allison Man, ESO, arXiv: 1410.3479
Galaxy merger fraction – method & data

- Largest sample of photometrically selected mergers at z>1 from stellar mass-complete samples

<table>
<thead>
<tr>
<th>Survey</th>
<th>Ref</th>
<th>Area [deg²]</th>
<th>Depth (5σ)</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>UltraVISTA / COSMOS</td>
<td>Muzzin+13</td>
<td>1.62</td>
<td>K=23.8</td>
<td>0.75”</td>
</tr>
<tr>
<td>CANDELS</td>
<td>Skelton+14</td>
<td>0.25</td>
<td>H=26.9</td>
<td>0.18”</td>
</tr>
</tbody>
</table>

- Merging massive \((M_\star \geq 10^{10.8} M_\odot) \) galaxies are identified by pairs:
 - Projected separations 10-30 kpc/h
 - Photo-z's overlap within 1σ uncertainties
 - Stellar mass or H-band flux ratio
 - 1:1 – 1:4 (major)
 - 1:4 – 1:10 (minor)

Allison Man, ESO, arXiv: 1410.3479
Galaxy merger fraction - results

- **Observed H-band flux ratio**
 - Bias towards gas-rich satellites
 - Increasing trend

- **Stellar mass ratio**
 - Bias against gas-rich satellites
 - Diminishing trend
Galaxy merger rates – observed vs predicted

If only stellar mass ratio is considered, we miss out on the gas-rich mergers at $z>2$ that have the right baryon ratio (Stewart+09)

- Gas-poor merger rate ✔
- Gas-rich merger rate
- Diverge at $z>2$
A massive galaxy doubles its stellar mass from $z \sim 3$ to 0.3 by accreting stars via major & minor mergers.
Average sizes of quiescent galaxies need to increase their sizes ~3-5 times
(Newman+12, van der Wel+14)

Major + minor mergers can at most double the size from $z \sim 2.5$ to 0

→ Need other mechanisms to explain the observed size evolution
Conclusions

- Discrepant merger fraction at $z \sim 2$ due to merger definition
 - Stellar mass ratio \Rightarrow bias against gas-rich satellites \Rightarrow diminishing merger fraction
 - Observed H-band flux ratio \Rightarrow bias towards gas-rich satellites \Rightarrow increasing merger fraction

- Which ratio to used? Depends on science questions.

- Merging is enough to explain the stellar mass assembly of the most massive galaxies at $z \sim 0$-2.5, but additional mechanisms are needed to explain the rapid average size evolution of quiescent galaxies

Allison Man, ESO, arXiv: 1410.3479