The Orion Radio All-Stars: extreme YSO radio and X-ray variability

Jan Forbrich

CfA

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

COMPACT CONTINUUM RADIO SOURCES IN THE ORION NEBULA1

GUIDO GARAY

Harvard-Smithsonian Center for Astrophysics; and European Southern Observatory

AND

JAMES M. MORAN AND MARK J. REID Harvard-Smithsonian Center for Astrophysics Received 1986 July 7; accepted 1986 September 9

Multi-wavelength properties of Young Stellar Objects

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star	'le (1999)
SKETCH			×	\mathbf{A}	• () •	2 Montmei
Age (years)	10 ⁴	10 ⁵	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	> 10 ⁷	Jelson &
m/INFRARED CLASS Class 0		Class I	Class II	Class III	(Class III)	Feic
Disk Yes		Thick	Thick	Thin or Non-existent	Possible Planetary System	
X-RAY	?	Yes	Strong	Strong	Weak	
THERMAL RADIO	Yes	Yes	Yes	No	No	Ģ
Non-Thermal Radio	No	Yes	No ?	Yes	Yes	
		1	X-rays will pr	s no future. [] ove to be a hoa rd Kelvin	ax."	

Image: Smithsonian Libraries, via Wikimedia Commons.

High-energy processes in Young Stellar Objects

Both X-ray *and* nonthermal radio emission probe the *innermost vicinities* of protostars!

The solar paradigm

Radio and X-ray emission constrain the **full sequence** of magnetic energy release, particle acceleration, energy transformation, and heating.

The radio-X-ray connection

The radio-X-ray connection

$$L_R(t) \propto rac{d}{dt} L_{\rm X}(t)$$

(Neupert 1968)

The radio luminosity traces the fast electrons and thus the energy injected in a flare. The X-rays trace the accumulated energy.

Figure: Neupert effect seen in an M dwarf star, compared with a solar example in the upper panel (Güdel et al. 1996).

YSO X-ray flares

Getman et al. (2009)

YSO radio flares

The radio-X-ray connection

Liebovitch (1974)

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System

Single-event events (SEEs)

YSO radio flares

YSO **radio flares**

The Orion Radio All-Stars

In a deep simultaneous radio and X-ray study of the **Orion Nebula Cluster** (30h), we detected **556 sources**, 7x more than previously known, while obtaining the by far largest set of **simultaneous radio and X-ray lightcurves** of YSOs.

Some of these radio sources are flaring **YSOs not detected in any other wave band**.

Forbrich et al. (2016); Forbrich, O'Dell, et al., in prep.

Radio spectral indices

Forbrich et al. (2016)

Exploring YSOs in the radio time domain

Exploring YSOs in the radio time domain

$\operatorname{Src}^{\mathrm{a}}$	COUP	prev. ID ^b	$d \qquad \Delta S_{ m max} \; (0-2{ m d})$			Δt_{\min} for x10 var.			$S_{\mathrm{C}}{}^{\mathrm{c}}$	$\rm CXO^{d}$	$\operatorname{varindex}^{\operatorname{e}}$	
	(radio)	(′)	(ep.)	(30 min)	(6 min)	(ep.)	(30 min)	(6 min)	${ m mJybm^{-1}}$	$0.5\text{-}8.0~\mathrm{keV}$	(\max)	
36	391	_	1.10	> 11	> 10	> 5	1d	27.0h	_	$0.056 {\pm} 0.003$	484.2	9
53	427	_	2.40	13	> 12	>7	1d	$17.7\mathrm{h}$	_	$0.165 {\pm} 0.004$	514.4	9
98	510	Zap 7, S	1.45	8	> 17	> 17	_	1.1h	$0.7\mathrm{h}$	$0.754{\pm}0.003$	36.8	2
110	530	GMR Q, S	0.51	6	11	> 6	_	24.9h	_	$0.303 {\pm} 0.003$	35.3	5
189	640	S	0.76	10	34	> 25	1d	20.4h	19.3h	$0.690 {\pm} 0.003$	155.7	1
254	745	GMR 12, KS	0.80	5	14	19	_	21.2h	20.5h	$23.208 {\pm} 0.003$	8048.8*	0
319	828	S	1.66	15	> 17	> 34	2d	41.1h	40.7h	$2.358 {\pm} 0.003$	5095.5^{*}	0
414	985	Κ	2.21	8	9	> 13	_	_	22.9h	$1.324{\pm}0.003$	2391.7^{*}	0
422	997	_	1.37	> 54	> 30	> 15	2d	41.1h	40.7h	$0.676 {\pm} 0.003$	2265.9^{*}	6
469	1101	S	1.79	2	12	> 14	_	1.1h	0.6h	$0.235 {\pm} 0.003$	3740.3^{*}	10
489	1143	Κ	2.98	> 16	> 11	>7	1d	27.6h	_	$0.219{\pm}0.004$	1430.8^{*}	0
495	1155	_	1.91	5	> 10	>7	_	47.4h	_	$0.267 {\pm} 0.003$	166.9	0
515	1232	Κ	3.22	52	> 138	> 101	1d	0.5h	0.4h	$1.188 {\pm} 0.004$	7916.2^{*}	10

 Table 2. Extreme radio variability in the ONC and X-ray properties

Exploring YSOs in the radio-X-ray time domain

Exploring YSOs in the radio-X-ray time domain

Forbrich et al., in prep.

Extreme YSO radio and X-ray variability

Applications in **precision astrometry**

Nonthermal nearby stars and YSOs can be followed up with the (also upgraded!) Very Long Baseline Array (VLBA), yielding precision absolute astrometry – e.g., for parallax or reflex motion studies:

$d(ONC) = 414 \pm 7 pc$

(Menten, Reid, Forbrich, & Brunthaler 2007, cf. Kounkel et al. 2017)

We have now followed up all 556 VLA detections with the VLBA, a **data record** for the VLBA (Forbrich et al., *in prep.*).

Such YSO astrometry is **complementary to Gaia and LSST** astrometry programs.

Summary

1 YSO radio flares now are increasingly accessible, they provide us with a complementary view of high-energy processes.

2 Among 222 Orion radio sources with X-ray counterparts, observed for 30h, we find 13 ORBS-like flux-density changes by 10x on timescales of 20 min to 2 days.

3 The shortest-timescale variability, with such changes on timescales of <1h appear well correlated in radio and X-ray emission, if less extreme in X-rays. Otherwise, the data show complex (non-)correlation of X-ray and radio emission.

4 Selecting the most extreme X-ray variability does not select the most extreme radio variability, nor necessarily emission.

5 Follow-up with VLBA will yield an astrometric census of nonthermal emission and embedded cluster kinematics down to velocities of 0.1 km/s. Extrasolar planets?