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The MESSENGER satellite orbited Mercury (before it crashed).
We used the GBT on its 8.4 GHz carrier as it went behind the
Sun, getting data on 05 and 10-12 May 2013.

MESSENGER Web Site http://messenger.jhuapl.edu,

A NASA Discovery mission to conduct the first orbital study
of the innermost planet
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After 4,104 orbits of Mercury and billions of miles of space travel, NASA's Messenger
orbiter ended its mission with a quiet bang on Thursday. Messenger crashed into the

planet it has been orbiting for four years.

NASA says the orbiter began the process of lithobraking at 3:26 p.m. ET — meaning
that Messenger essentially scraped to a stop after hitting the planet's surface
traveling at thousands of miles an hour. The Oxford English Dictionary reminds us that
litho is the combining form for the Greek word for "stone.”

Messenger was launched from Earth in 2004. It took years just to get to Mercury and
years more to reach orbit around Mercury in 2011. Now, after studying Mercury's
craters, it will make a new one — NASA says its impact crater should be about 52 feet

wide.




We voltage sample at 5 MHz and
process the signal later. Mostly, 1-
second chunks, providing a 5
million point spectrum every
second for all four Stokes
parameters.

S/N for Stokes I is huge—about
104!

Messenger transmits RCP with a
little leakage into LCP, which
provides a stable ~10% linear
polarized component. This lets us
measure Faraday rotation (Sorry,
folks: for this part, S/N is only
103)).
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The Coronal
Mass Ejection on
11 May 2013...









“A” marks where the leading
edge overlies Messenger. This
marks the beginning of large
changes in:

--Line Width (turbulence)
--Line Center (N(e))

--Polang (Faraday Rotation)

These quantities don’t
change suddenly; they begin
slowly about 15 minutes
before, showing that the
CME perturbs the medium
into which it flies—it doesn’t
make a shock.

Polang Width, Hz Center, Hz

Pol Frac




We see BOTH Faraday rotation AND frequency changes.
We can combine them to get the field strength:

Faraday rotation:
Af = 2. G x 107" N(e)BA* radians
A =33x107""B AN (ﬁ-j

Dispersion: dN (e)

Afrfess = 1.34 x 10712 -1
f” .1[(.\.‘1.(:!!4.- (II(

Combine—eliminate N(e)
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For point A (the leading edge of the CME):
Faraday rotation: ~ 6 degrees
Frequency change ~ 5 Hz over 350 sec

Gives...

B ~ 30 milhG
AN(e) ~ 1.1 e16 cm™

For the Dark Core:
Faraday Rotation ~ +/- 6 degrees
Frequency change ~ 5 Hz over 144 sec
Gives...
B ~ 70 milliG
AN(e) ~ 4.5 el5 cm?, etc...




Turbulence...

Turbulence elements produce refractive scintillation, so the
signal amplitude changes with time. This leads to spectral
broadening.

Here, we use 1 msec chunks and about 1 million points (about
1000 seconds). We Fourier transform the time series to obtain
the spectral signature produced by turbulence.

I made a sample plot of one of these time series and it looks
very boring...1 million random numbers.

But...not REALLY random, because their Fourier transforms
reveal interesting power-law spectra with one (or sometimes
two?) breaks.
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The “speed” (transverse
velocity of the CME) is
calculated from the
spectral knee (see next :
slides). It tracks the line T
width. The line width and s ety
the speed are both are o
good turbulence
indicators.
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Spectral density ((rad m-))

V is the transverse speed
F .. =8.2 Hz, the turnover frequency V =
K, .. =6.9e-5 rad/m, the associated K char

spatial wavenumber (from theory)

2H,Jﬁ:hznr

IMAMURA ET AL.

402fet001data20130510220116.h5[0:200] Welch32768/512

1EB 103
a=11/3
102
1E5 - gr:-‘\.:__‘_‘\ --u."..
‘- * \‘ kcnar '.*'
\ ) .
|- T \“ 1 .... 10]1 \
1 '! \\\ .'.' -\-H_:ﬂ ;I
1E4 1 S U W by E JWI‘.f ﬂ'r "]w
- i 10
! "\ Kt ':_E" =
\ KL TTTTE e~ 5
1 ref “‘ \ E .
1E3 A v ~ 1o
N i im e el =]
P Z
LY e \
— Cp=1E7 \ \ 108 fper (Hz) = 8.209
1E2 1 T gp = :E_Z ‘i| ‘\ "
-=-=-Cp=1E- Y \ | § .
-- Cp=1E4 oo Ly Vo 107 speed (kms ') = 747.537
---Cp=1E-3 Vo
1E1 : . 3 - L .
- . ~ - - - - 10 :
iE-7 1E-6 1E-5 1E-4 1E-3  1E-2  1E-1 i =3 = = = -t

Wavenumber (rad m™) Frequency [Hz)



Polarization mode
changing: conversion of
Stokes V to (Q, U). For
no turbulent scattering,
total polarized power is
conserved:

(Q? + U? + V32 = const.

as happens here (with
modest line broadening.

With increased line
width from turbulent
scattering (as on May
12), some polarized
power is lost to Stokes 1.
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A surprise:

The top panel shows the
system temperature,
which increases by a
factor of 2 for two
periods.

Take a closer look: the
polarization...
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The first rise is highly
LINEARLY polarized.

The second is highly
CIRCULARLY
polarized.

The emission is almost
certainly coherent
plasma emission. This
means the plasma freq
is half the observed
freq, or about 4 GHz.

n(e) ~2 ell cm3 at

4.5 Solar Radii

Stokes I Continuum

Stokes Q Continuum

20 21 22

Stokes U Continuum
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The next day, 12
May, Messenger
was “dove into the
Sun”, showing
huge RM increases
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Stokes V Frac

RM increases:
8.5 full turns!

Cen, Hz

Accompanied by
increasing line
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conversion.
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For each half-turn of the position angle:
Faraday rotation: ~ 180 degrees
Frequency change ~ 5 Hz over 180 sec

Gives...

B ~ 1.7 Gauss
AN(e) ~ 6 el5 cm™

We have 17 half-turns, so the total change in N(e)
is

AN(e) ~ 1 el7 cm™.

(The elongation was 1.8 Solar radii)



At the other
extreme, far from
the Sun:

In May 2014 we had
some short test time
for observing
STEREO. We
began on 10 May.

Within the first half-
hour, we saw
remnants of a CME!
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CAN WE SEE CMEs ON
OTHER STARS?

To do so, we need a strong,
narrow-band signal whose path
just grazes the star.
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CAN WE SEE CMEs ON
OTHER STARS?

To do so, we need a strong,
narrow-band signal whose path
just grazes the star.

OH/IR STARS FILL THE
BILL.!



OH/IR stars are Asymptotic Branch Stars, the longest
period Mira Variables, with large magnetically
convective motions that throw off atmospheric debris.
The debris are dusty and molecular, forming a patchy
shell that is accelerated by radiation pressure. The
dust converts all of the visible light to IR. The IR
pumps the OH molecules, making masers.
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OH Masers occur at the front/back along the line of sight to the
star. Masers in some stars come from larger areas and have more
complex velocity structure. Some OH/IR masers exhibit linear
polarization, so we can measure not only frequency changes
(changes in N(e)) but also angle changes (changes in Faraday
rotation).

In any one star, the masers behind, at positive velocity, should
suffer stellar-atmosphere propagation effects; the ones in front
should not. We get a free control sample!



Here’s the most intense OH/IR maser in our sample. Each
“polar cap” has several narrow (few hundred Hz) components.
Polarizations are not impressively large—damn! Masers are
saturated, hence Stokes I depends linearly on star’s luminosity.

Maser
line
shapes
remain
strictly
constant

during
the
star’s
cycle!
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Do we see CMEs in OH/IR stars?
Don’t know yet! Data reduction still underway.
We saw enough to convince the TAC to allot time. But the

changes were subtle and need verification using the very best
calibration techniques (a sort of “self-cal”).
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Quasi-periodic frequency fluctuations observed during coronal
radio sounding experiments 1991-2009

AL Efimov?, L.A. Lukanina® L.N. Samoznaev?, V.K. Rudash?®, L.V. Chashei®,
M.K. Bird ©%* M. Pitzold ¢, The MEX, VEX, ROS Radio Science Team '

* Kotel'nikov Inst. Radio Engg. & Electronics, Russian Acad. Science, 125009 Moscow, Russia
b [ ebedev Phys. Inst., Russian Acad. Science, 117924 Moscow, Russia
© Argelander-Institut fiir Astronomie, Univ. Bonn, 53121 Bonn, Germany
d Rheinisches Institut fiir Umweltforschung, Univ. Kéln, 50931 Kéln, Germany

Received 9 February 2011; received in revised form 10 October 2011; accepted 15 October 2011
Available online 21 October 2011

6. Conclusion

Large-scale coronal sounding experiments carried out over
during the years from 1991 to 2009 with the spacecraft ULYS-
SES, GALILEO, MARS-EXPRESS, VENUS-EXPRESS
and ROSETTA have provided evidence for quasi-periodic
oscillations of the electron density in the 5-min band in the
outer solar corona at heliocentric distances between 3 and
40 Rs. It 1s suggested that the origin of these quasi-periodic
fluctuations is associated with propagating magnetosonic
waves, generated locally via nonlinear interactions with Alf-
vén waves propagating from the corona base.

Table 2 Table 3

Characteristics of the QPC (2004-2008). Characteristics of RFF spectra, ULYSSES 1995.

No in Spacecraft Date E/W R/Rs 0 Vmaxs g Spectrum number 1 2 3 4 5 6

Fig 5 mHz DOY 1995 56 55 57 59 no7

1 MEX 10 September E 7.22 30° 3.72 242 R/Rs 28.2 294 26.5 236 28.5 28.6
2004 0, degree —88.9 —88.1 —84.5 -73.0 —6.0 -5.7

2 ROS 17 April 2006 W 586 25.7°3.92 2.58 Vinax, MHZ 6.00 6.22 5.36 495 4.36 4.52

3 VEX 19 October 2006 W 8.63 23° 422 243 Av, mHz 293 2.88 2.62 3.43 2.58 2.90

4 MEX 18 October 2006 E  6.45 19.5° 4.77 233 A Vinax 0.49 046 0.49 0.69 0.59 0.64

5 MEX 13 December w73 =220 351 2.96 g 3.38 311 2.80 423 236 2.80

2008

©4=-88.9°; ©,=-88.1°; ©3=-84.5°;
0,4=-73.0% 5= -6.0°; 0= -5.7°
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Fig. 6. Temporal RFF spectra [differential frequency fluctuatior
observed with ULYSSES at highfatitude regions of the solar coro
(spectra 1-4) and low-latitude regidls (spectra 5 and 6) during the peri
between 24 February and 12 Marcifll 995. The heliographic latitude of't
solar proximate point for each s um is denoted at the top.

“QPO”



It’s NOT Doppler. What can it be? Suppose N(e) increases
with time. The phase velocity increases with n(e)...
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