The search for radio emission from exoplanets using LOFAR low-frequency beamformed observations

Jake Turner

Graduate Research Fellowship Program

University of Virginia

Laboratoire de Physique et Chemie de l'Environment et de l'Espace (LPC2E)

AASTCS 5: Radio Exploration of Planetary Habitability May 11, 2017

Collaborators:

Philippe Zarka (LESIA – Paris Observatory) Jean-Mathias Grießmeier (LPC2E)

Overview

- Exoplanet Magnetic Fields
- Radio Observations of Exoplanets
- Our LOFAR Observing Campaign
 - Data Pipeline (Turner+ 2017, submitted)
 - -Jupiter Observations
 - Jupiter as an exoplanet (Turner+ 2017, in prep)
 - Preliminary results on 55 Cnc (Turner+ 2017, submitted)

Exoplanet Magnetic Fields Motivation

- Formation and evolution
- Interior structure
- Rotation period
- Atmospheric evolution and escape
- Ohmic heating
- Star-planet Interactions
- Moons
- Solar System comparison
- <u>Habitability</u>

Lazio+ 2010, Grießmeier+ 2005, Rauscher+ 2010, Hess & Zarka 2011, Grießmeier 2015, Zarka+2015

Jake Turner (University of Virginia)

Radio Observations

- Electron cyclotron emission in radio
- Best method to study planetary magnetic fields (Grießmeier 2015)

Zarka 1998 Solar System Radio Spectrum Peak of Emission Normalized flux density at 1 AU, W m⁻² Hz⁻¹ 01 lo-DAM HOM $f_{g} = 2.8 (B_{p}/G) MHz$ KOM B_p: Planetary B-field Non-lo-DAM 100% circularly Jupiter 10⁻²¹ Saturn (SKR) polarized Earth (AKR/TKR) Uranus (UKR) Neptune (NKR) Flux (Planet) \geq Flux (star) Ionospheric Space Ground cutoff 10⁻²³ 10 100 1000 10000 100000

Jake Turner (University of Virginia)

Radio Habitability: May 11, 2017

Frequency, kHz

Predicting Magnetic Field Strengths

Table 1	Proposed scaling laws	Christensen 2010	
#	Rule	Author	Remark
1	$B_p R_p^3 \propto (\rho \Omega R_p^5)^a$	e.g. Russell (1978)	magnetic Bode law
2	$B^2 \propto \rho \Omega^2 R_c^2$	Busse (1976)	
3	$B^2 \propto \rho \Omega \sigma^{-1}$	Stevenson (1979)	Elsasser number rule
4	$B^2 \propto \rho R_c^3 q_c \sigma$	Stevenson (1984)	at low energy flux
5	$B^2 \propto \rho \Omega R_c^{5/3} q_c^{1/3}$	Curtis and Ness (1986, modified)	mixing length theory
6	$B^2 \propto \rho \Omega^{3/2} R_c \sigma^{-1/2}$	Mizutani et al. (1992)	
7	$B^2 \propto \rho \Omega^2 R_c$	Sano (1993)	
8	$B^2 \propto \rho \Omega^{1/2} R_c^{3/2} q_c^{1/2}$	Starchenko and Jones (2002)	MAC balance
9	$B^2 \propto \rho R_c^{4/3} q_c^{2/3}$	Christensen and Aubert (2006)	energy flux scaling

- Rotational dependent vs. rotation-independent approaches
- Observations will help disentangle which scaling law should be applied

Radio Flux Predictions: Exoplanets

Scaling law: average radio power to incident Poynting flux of plasma flow

Jake Turner (University of Virginia)

Radio Flux & Frequency Predictions

Predicted

maximum emission
frequency for
rotationindependent
planetary magnetic
field and expected
radio flux for
known planets

Jake Turner (University of Virginia)

Previous Radio Searches

- Secondary Eclipse of HAT-P-11b at 150 MHz
- Unconfirmed

- Current upper limits
- Blue: VLA Red: GBT Orange: GMRT Cyan: UTR-2
- No Detections

LOFAR Obervations

- v: 26-73 MHz
- IQUV Polarization
- Raw Res: 10 msec & 3 kHz
- 9 arcmin resolution
- 16 mJy sensitivity: 2 mins over full band
- Observational Campaign:
 - 4 exoplanets so far
 - 3 Beams
 - Over full orbital phase

Turner+ 2017 (submitted)

Jake Turner (University of Virginia)

LOFAR Pipeline

Raw

Turner+ 2017 (submitted)

Jake Turner (University of Virginia)

LOFAR Pipeline

Normalized+ RFI mitigation Raw

Jake Turner (University of Virginia)

Preliminary Results: Pulsar

- Pulsar B0823+26 is detected at high S/N at known period
- Brightness of pulsar changes with time (known previously).

Turner+ 2017 (submitted)

Jupiter Observations

- Scale Jupiter radio emission from Nançay Observatory as if it was an exoplanet (reduce flux by $10^{-3} - 10^{-6}$).
- Produce a set of observables that can be used as a guideline in the search exoplanetary radio emission

Jake Turner (University of Virginia)

Broadband Observables

Time Series

Turner+ 2017 (in prep)

Jake Turner (University of Virginia)

Burst Observables

High-pass filtered time series

Number of peaks/power above threshoid^{2017 (in prep)}

Jake Turner (University of Virginia)

55 Cnc Planetary System

- One of best targets for radio observations due small orbital distance, proximity (12.3 pc), and multiplicity (Grießmeier+ 2007).
- Emission from 55 Cnc e possible: tens of MHz with flux densities up to hundreds of mJy (Grießmeier+ 2007, Jardine+ 2008).

Jake Turner (University of Virginia)

55 Cnc Preliminary Results:

- Do not

 observe
 broadband
 emission from
 55 Cnc
- Full dataset
 needs to be
 analyzed
 Total of 18
 hours

Turner+ 2017 (submitted)

Conclusions

- Radio observations are the best way to study exoplanet magnetic fields
- LOFAR data is stable and sensitive enough to detect astrophysical signals from the pulsar
- We observed Jupiter as if it was an exoplanet and developed a set of observables as guides
- Initial analysis of 4 hours of LOFAR 55 Cnc e data do no show an exoplanet signal
- The rest of the observational campaign is undergoing analysis

Questions?

Email: jt6an@virginia.edu Website: https://sites.google.com/site/astrojaketurner

Expected PHD Defense: August 2018
 Looking for Post-Docs ③

Jake Turner (University of Virginia)