Exoplanetary environments and Radio Signatures

Moira Jardine St Andrews

What physical properties determine radio emission?

$$f_{plasma}(Hz) = \sqrt{n_e(m^{-3})}$$
 $f_{gyro}(Hz) = 28 * 10^9 B(T)$

What influences stellar activity?

Consistent with linear dynamo:

 $\left< \left| B_V \right| \right> \propto \Omega_* \propto P_{rot}^{-1}$

Mass and rotation rate influence stellar magnetic fields

See Gastine+12, Morin+12, Kochukhov+17

Radial field

How do we observe the structure of stellar magnetic fields?

•In presence of magnetic field, lines split by Zeeman effect

•Difference between left and right circularly polarised components is Stokes V

- •Track Stokes V get line of sight field
- •Note max amplitude at disk centre

•Only large-scale field detected

Azimuthal field

- •Note max amplitude on the limb
- •Note change of polarity at disk centre

Imaging stellar magnetic fields

Fit Stokes profiles with spherical harmonics

$$B_{r}(\theta,\phi) = -\sum_{\ell,m} \alpha_{\ell,m} Y_{\ell,m}(\theta,\phi)$$

$$B_{\theta}(\theta,\phi) = -\sum_{\ell,m} \left(\beta_{\ell,m} Z_{\ell,m}(\theta,\phi) + \gamma_{\ell,m} X_{\ell,m}(\theta,\phi)\right)$$

$$B_{\phi}(\theta,\phi) = -\sum_{\ell,m} \left(\beta_{\ell,m} X_{\ell,m}(\theta,\phi) - \gamma_{\ell,m} Z_{\ell,m}(\theta,\phi)\right)$$

See also: Hussain+02, Folsom+15, Rosen+15, 16,

Stokes V

Zeeman-Doppler maps

HD 189733 - 2008

Tau Boo - 2011

Do fully convective stars have a different dynamo?

Do fully convective stars have a different dynamo?

Low mass stars are activity over-achievers

See also Lammer+03, Cohen+15, Garrafo+16, Reville+16, Fichtinger+2017

Low mass stars spin down slowly and remain active for longer...

3D MHD models: Llama+13, Vidotto+14, 15, do Nascimento+16, Nicholson+16

Modelling exoplanetary environments

HD 189733 - 2008 July

2. Extrapolate magnetic field and solve for wind

3. Determine local conditions at exoplanetary orbit

See+2015

Ram pressure

Large pressure scale height of low mass stars -> slow fall-off in plasma frequency

Magnetic fields of planet hosts

Vidotto+2015

3D MHD wind models

Vidotto+2015

Some exoplanetary orbits are inside the Alfven radius

Exoplanets experience varying environments as they orbit

See also: Cohen+10, Strugarek+15, Vernisse+17a,b; Pinto+17

Radio emission modulated on synodic period (and cycle period)

HD 189733

See+2015

Intermittent mass ejections in stellar winds

<u>M dwarfs exoplanets in close orbits:</u>

Continuous impact with stellar mass ejections if ejection rate ~ 6 solar (Khodachenko+07).

- What determines the ejection rate?
- Flux emergence rate
- Differential rotation (rate of shear)

Differential rotation decreases with mass

Is the ejection rate a function of stellar mass?

Pilot study (Gibb+14):

- Emerge a simple bipole through stellar surface
- Evolve coronal magnetic field with magnetofrictional approach (Yang 86)
- Track formation and evolution of flux ropes (blue) that are precursors to coronal mass ejections.

Lower mass -> lower surface shear -> slowly-evolving coronae

 $d\Omega = 3.03[T_{eff}/5130 \text{ K}]^{8.6} \text{ deg/day}$ (Collier Cameron 07)

Full-star, long term evolution

25 models, each evolved for 1 year:

- (1-5) x solar flux emergence rate
- (1-5) x solar differential rotation

Resolution:

- Spatial: 1° at equator, less at poles
- Temporal: 1 day

Boundary conditions:

• open at 2.5R_{*}, B_r at surface

The Sun on steroids...

Day 0

(Gibb+14,16)

Frequency and location of coronal ejections depends on:

- stellar rotation rate (magnetic flux emergence rate) and
- stellar mass (surface differential rotation)

Full-star, long term evolution also shows that hotter stars have more dynamic coronae.

 $d\Omega = 3.03[T_{eff}/5130 \text{ K}]^{8.6} \text{ deg/day}$ (Collier Cameron 07)

Increased shear confines flux ropes to active belts

Exoplanet environments vary with stellar mass and rotation rate (age)

- Low mass stars:
 - remain magnetically very active over long timescales
 - have low differential rotation (and slowly-evolving coronae?)
 - Implications for mass ejection rates?

NASA: STEREO

 Exoplanet environments vary on synodic and stellar cycle timescales