EvryFlare: Stellar activity for every bright solar-type and red dwarf star in the Southern sky

EVRYS(

ATI / AST-1407589

Ward Howard, Nicholas Law (Evryscope-PI), Octavi Fors Jeff Ratzloff, Hank Corbett, Erin Conn, Daniel del Ser

The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

An Evryscope sample of flares for red dwarfs & solar-type stars

Late red dwarf stars frequently host habitable-zone rocky planets (Dressing & Charbonneau 2015). They also frequently flare, with unknown effects on planetary habitability (Davenport 2016 & references therein). We are surveying

- nearby, bright M-dwarfs for stellar activity in the optical to better understand M-dwarf planet-host stars.
- **Solar-type** (G-dwarf) stars may emit super-flares, but their occurrence is an active area of research (Maehara et al. 2017; Shibayama et al. 2013). By surveying the brightest G-dwarf stars, we may help constrain both flare statistics of nearby G-types as well as provide flare rates for nearby solar analogues hosting planets.
- Below, a sample of flare candidates detected with the Evryscope on solar type (colored yellow) and late red dwarf (colored red) stars are displayed as contrastin-magnitude versus about 30 minutes of time.

References: [1] C. Dressing, D. Charbonneau (2015). *ApJ*. 807. [2] J. Davenport (2016). *ApJ*. 829. 1, 12 pp. [3] H. Maehara et al. (2017). Accepted by *PASJ*. (arXiv:1702.07141). [4] T. Shibayama et al. (2013). *ApJS*. 209. 5, 13pp.

- The gigapixel-scale **Evryscope**, an array of 24 optical telescopes, simultaneously observes the entire visible sky with an 8,000 square degree field every 2 minutes.
- Designed for time-domain astronomy and transient science, the Evryscope explores exoplanet transits, stellar activity and variability, and pre-imaging & realtime detection of microlensing & supernova events.
- Its g' = 16.5 limiting magnitude is increased by hourcoadds to g' = 18, with a database of 3.4 million lightcurves.
- Funded by NSF/ATI and NSF/CAREER, and operating at CTIO since May 2015, the Evryscope-South will soon be joined by the **Evryscope-North** to give truly-all-sky coverage.

36,000 pixels; 100 degrees

Evryscope-North at Mount Laguna SAN DIEGO STATE 🏢 Observatory

Evryscope-North & Evryscope-South will provide all-sky rapid monitoring of essentially every object brighter than 16th magnitude . Overlapping Evryscopes allow truly-simultaneous multi-site multi-color observations over thousands of square degrees. Expected deployment of Evryscope-North at MLO this year. In collaboration with supernova & transients researcher **Robert Quimby**. Funded by SDSU, UNC-Chapel Hill and the Research Corporation Scialog program.

for SCIENCE ADVANCEMEN

Evryscope & Owens Valley LWA Collaboration

Complementing Evryscope in the radio, the entire-sky Owens Valley Long Wavelength Array (LWA; PI: Gregg Hallinan) is an array of 288 dual polarization antennas covering 1.7 km in diameter. Recently constructed at Caltech's Owens Valley Radio Observatory (OVRO), the LWA and its 9-second integration time will enable exciting **Evryscope + LWA science, including:**

Possibility of detecting an exoplanetary magnetic field

Optical/radio prompt emission for Swifttriggered flares

Possibility of detecting an extrasolar CME

analogues

Stellar activity statistics for nearby LWA entire visible sky: ~10³ bright-star radio lightcurves

Evryscope entire visible sky: 3.4+ million optical lightcurves

How will we do this?

- Simultaneous lightcurves across the (overlapping) visible sky in the optical and radio
- Evryscope-North will increase sky overlap with LWA from ~45% to 100%. If a radio flare, CME or exoplanet

SDSU's Mount Laguna Observatory

RESEARCH CORPORATION 🕔 for SCIENCE ADVANCEMENT

auroral emission is detected by LWA, Evryscope will search for possible optical counterparts at higher spatial resolution. If successful, statistics for flare & CME energy distributions and frequencies in the optical and radio may give increased insight into stellar behavior of nearby planet-hosts. Prompt flare emission follow-up to *Swift* triggers may be performed using future Evryscope and LWA pipelines.