Occultations of Astrophysical Radio Sources as Probes of (Exo)Planetary Environments

Paul A. Dalba¹, Paul Withers^{1,2}, & Marissa F. Vogt²

1: Astronomy Department, Boston University 2: Center for Space Physics, Boston University

Motivation

- Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth.
- Traditional radio occultation experiments rely on a spacecraft to transmit near the planet.
- Can occultations of radio emissions from distant astrophysical sources (i.e., pulsars) be used to measure magnetic field strength, plasma density, and neutral density of solar system and extrasolar planets?

Applications to Exoplanets and Stars

- A Jupiter-like exoplanet, in a face-on orbit sweeps out 10¹⁵ km² over a full Jupiter-like orbit. From 10 light-years away, this is only 10⁻¹⁴ of the total area of the sky.
- The likelihood of suitable alignment of the Earth, an exoplanet, and a distant astrophysical radio source is too small for this to be a viable method of exoplanet characterization.
- Observations of stellar radio emissions during an exoplanet transit may offer a solution.
- Occultation of a distant astrophysical radio source by a star may also be informative.

blogs.bu.edu/pdalba Email: pdalba@bu.edu

	Jupiter	Saturn	Uranus	Neptune
ohere osphere)	10R」 (200R」)	1.3R _s (25R _s)	2.3R _u (18R _u)	2.3R _N (35 R _N)
_{ere} /a _{phere} /a)	9.2x10 ⁻⁴ (1.8x10 ⁻²)	5.6x10 ⁻⁵ (1.1x10 ⁻³)	2.0x10 ⁻⁵ (1.6x10 ⁻⁴)	1.3x10 ⁻⁵ (1.9x10 ⁻⁴)
otential urces*	1,700 pulsars + ≥10,000 AGN			
sphere sphere) ons per vear	0.91 (18)	2.2x10 ⁻² (0.42)	2.8x10 ⁻³ (2.2x10 ⁻²)	9.1x10 ⁻⁴ (1.4x10 ⁻²)

References: Withers & Vogt (2017) ApJ, 836, 114.

*Krolik, J. H. 1999, Princeton Univ. Press, Melia, F. 2009, Princeton Univ. Press.