Observational Constraints on Stellar Winds from the Hubble Space Telescope Brian E. Wood (Naval Research Laboratory)

Movie from LASCO/C3 coronagraph on SOHO spacecraft

Slow wind	Fast wind			
$430 \pm 100 \text{ km/s}$	700–900 km/s			
$\simeq 10~{ m cm}^{-3}$	$\simeq 3 \text{ cm}^{-3}$			
$(3.5 \pm 2.5) \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$	$(2 \pm 0.5) \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$			
$6 \pm 3 \text{ nT}$	$6 \pm 3 \text{ nT}$			
$T_{\rm p} = (4 \pm 2) \times 10^4 {\rm K}$	$T_{\rm p} = (2.4 \pm 0.6) \times 10^5 \mathrm{K}$			
$T_{\rm e} = (1.3 \pm 0.5) \times 10^5 \mathrm{K} > T_{\rm p}$	$T_{\rm e} = (1 \pm 0.2) \times 10^5 {\rm K} < T_{\rm p}$			
	$T_{ m p\perp}>T_{ m p\parallel}$			
filamentary, highly variable	uniform, slow changes			
He/H $\simeq 1 - 30\%$	He/H≃ 5%			
low-FIP enhanced	near-photospheric			
n_i/n_p variable	n_i/n_p constant			
	$T_i \simeq (m_i/m_p)T_p$			
F	$v_i \simeq v_{ m p} + v_A$			
streamers and transiently open field	coronal holes			
	$430 \pm 100 \text{ km/s}$ $\simeq 10 \text{ cm}^{-3}$ $(3.5 \pm 2.5) \times 10^8 \text{ cm}^{-2} \text{s}^{-1}$ $6 \pm 3 \text{ nT}$ $T_p = (4 \pm 2) \times 10^4 \text{ K}$ $T_e = (1.3 \pm 0.5) \times 10^5 \text{ K} > T_p$ $T_p \text{ isotropic}$ filamentary, highly variable $\text{He/H} \simeq 1 - 30\%$ low-FIP enhanced $n_i/n_p \text{ variable}$ $T_i \simeq T_p$ $v_i \simeq v_p$ streamers and transiently			

Stellar Wind Erosion of a "Hot Jupiter"

This is just an artist's conception of a stellar wind eroding a planetary atmosphere, but Ly α absorption from such an eroding atmosphere may have actually been detected for the transiting exoplanet HD 209458b (Vidal-Madjar et al. 2003, Nature, 422, 143; Linsky et al. 2010, ApJ, 717, 1291).

Evolution of the Solar X-ray and EUV FLux

The Case for a Very Strong Wind for the Young Sun

- 1. The young Sun would have been much more coronally active, with higher coronal densities, so one would intuitively expect a stronger wind.
- 2. Aside from the quiescent wind, the stronger and more frequent flares of the young Sun should by themselves lead to a massive CME-dominated wind. Example: Due to CMEs alone, Drake et al. (2013) predict \dot{M} =150 \dot{M}_{\odot} for the 500 Myr old solar analog π^1 UMa.

Conclusion: There is every reason to believe the solar wind must have been much stronger in the past.

Drake et al. 2013, ApJ, 764, 170

The Case for a Relatively Weak Wind for the Young Sun

Solar activity varies significantly over the course of its activity cycle, but:

- 1. Voyager has observed little variation from the canonical solar mass loss rate of \dot{M}_{\odot} =2×10⁻¹⁴ \dot{M}_{\odot} /yr.
- 2. There is no strong correlation between solar X-ray flux and mass loss rate.

Conclusion: Perhaps the solar wind is relatively constant over time.

The Global Heliosphere

The only known method of detecting solar-like coronal winds around other stars is by detecting Lyman- absorption from stellar "astrospheres," analogous to our own global heliosphere.

Müller & Zank 2004, JGR, 109, 7104

Astrosphere Images

But unfortunately we cannot detect the astrosphere of a Sun-like star like this!

Models of the α Cen Astrosphere

Astrospheric Absorption Predictions for α Cen

Wood et al. 2001, ApJ, 547, L49

Astrospheric Models

The ϵ Eri astrosphere is comparable in size to the full moon in the night sky!

List of Astrospheric Measurements

Star	$\frac{\text{ble 1. Mass Loss N}}{\text{Spectral}}$	\overline{d}	V_{ISM}	θ	\dot{M}	$\text{Log } \mathbf{L}_x$	
Type		(pc)	$({\rm km \ s^{-1}})$	(deg)	(\dot{M}_{\odot})	0	$({ m A}_{\odot})$
MAIN SEQUI	ENCE STARS						
Proxima Cen	M5.5 V	1.30	25	79	< 0.2	27.22	0.023
α Cen	G2 V+K0 V	1.35	25	79	2	27.70	2.22
ϵ Eri K1 V		3.22	27	76	30	28.32	0.61
61 Cyg A	K5 V	3.48	86	46	0.5	27.45	0.46
ϵ Ind	K5 V	3.63	68	64	0.5	27.39	0.56
EV Lac	M3.5 V	5.05	45	84	1	28.99	0.123
70 Oph	K0 V+K5 V	5.09	37	120	100	28.49	1.32
36 Oph	K1 V+K1 V	5.99	40	134	15	28.34	0.88
ξ Boo	G8 V $+$ K4 V	6.70	32	131	5	28.90	1.00
61 Vir	G5 V	8.53	51	98	0.3	26.87	1.00
π^1 UMa	G1.5 V	14.4	43	34	0.5	28.96	0.97
EVOLVED ST	ΓARS						
δ Eri	K0 IV	9.04	37	41	4	27.05	6.66
λ And	G8 IV-III $+$ M V	25.8	53	89	5	30.82	54.8
DK UMa	G4 III-IV	32.4	43	32	0.15	30.36	19.4

Mass Loss/X-ray Relation

Mass-loss (\dot{M}) vs. X-ray surface flux (F_x) :

$$\dot{M} \propto F_x^{1.34 \pm 0.18}$$

X-ray surface flux (F_x) vs. rotation rate (V_{rot}) :

$$F_x \propto V_{rot}^{2.9 \pm 0.3} \text{ (Ayres 1997)}$$

Rotation rate (V_{rot}) vs. age (t):

$$V_{rot} \propto t^{-0.6 \pm 0.1} \text{ (Ayres 1997)}$$

Mass-loss (\dot{M}) vs. age (t):

$$\dot{M} \propto t^{-2.33\pm0.55}$$

Wind Evolution for a Sun-like Star

Is Magnetic Topology Inhibiting the Winds of Young, Active Stars?

Polar Spots?

(e.g., Strassmeier 2002, AN, 323, 309)

Toroidal Fields?

(e.g., Vidotto et al. 2016, MNRAS, 455, L52)

Table 2. Magnetic properties of our sample. EV Lac, ξ Boo A and ϵ Eri had their properties averaged over multi-epochs (Appendix A).

Star ID	$\langle B^2 \rangle$ (G ²)	$\begin{array}{c} \langle B_{\rm pol}^2 \rangle \\ ({\rm G}^2) \end{array}$	$\langle B_{\rm tor}^2 \rangle \ ({\rm G}^2)$	$\langle B_{\rm axi}^2 \rangle$ (G ²)	$\begin{array}{c} \langle B_{\rm dip}^2 \rangle \\ (G^2) \end{array}$	$f_{ m pol}$	$f_{ m tor}$	$f_{\rm axi}$	$f_{ m dip}$	Reference for surface magnetic map
EV Lac	3.6×10^{5}	3.4×10^{5}	1.7×10^{4}	1.0×10^{5}	2.5×10^{5}	0.95	0.05	0.31	0.72	Morin et al. (2008)
ξ Βοο Α	1.8×10^{3}	6.6×10^{2}	1.1×10^{3}	3.4×10^{2}	1.2×10^{3}	0.37	0.63	0.51	0.43	Morgenthaler et al. (2012)
π^1 UMa	1.1×10^{3}	2.0×10^{2}	8.9×10^{2}	3.3×10^{1}	7.4×10^{2}	0.18	0.82	0.16	0.68	Petit et al. (in preparation)
ϵ Eri	2.7×10^{2}	2.0×10^{2}	7.5×10^{1}	7.8×10^{1}	2.0×10^2	0.72	0.28	0.40	0.75	Jeffers et al. (2014)
<i>ξ</i> Βοο Β	4.0×10^{2}	2.7×10^{2}	1.3×10^{2}	7.3×10^{1}	1.8×10^{2}	0.68	0.32	0.27	0.45	Petit et al. (in preparation)
61 Cyg A	4.5×10^{1}	3.9×10^{1}	5.7×10^{0}	8.2×10^{-1}	8.6×10^{0}	0.87	0.13	0.02	0.19	Boro Saikia et al. (in preparation)
€ Ind	5.8×10^{2}	5.6×10^{2}	2.0×10^{1}	2.8×10^{2}	3.3×10^{2}	0.96	0.04	0.51	0.56	Boisse et al. (in preparation)

Why Don't Massive Flare Rates Seem to Yield Massive CME-Driven Winds?

- 1. Perhaps active star active regions are like the recent solar AR 12192, which produced many flares but not CMEs.
- 2. What is it about this solar AR that inhibited CMEs?
 - Is it the strength of confining overlying fields?
 - Or is it some more subtle characteristic of internal field topology?

THE ASTROPHYSICAL JOURNAL LETTERS, 804:L28 (6pp), 2015 May 10 © 2015. The American Astronomical Society. All rights reserved.

doi:10.1088/2041-8205/804/2/L28

WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

XUDONG SUN (孙旭东)¹, MONICA G. BOBRA¹, J. TODD HOEKSEMA¹, YANG LIU (刘扬)¹, YAN LI², CHENGLONG SHEN (申成龙)³, SEBASTIEN COUVIDAT¹, AIMEE A. NORTON¹, AND GEORGE H. FISHER²

¹W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085, USA; xudong@Sun.stanford.edu

Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA
 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China Received 2015 January 17; accepted 2015 April 17; published 2015 May 5

Obstacles to Wind Detection via Astrospheres

(Why so few astrosphere detections since 2005?)

- I. The astrospheric detection likelihood per observation is generally very low, as the Sun lies within the Local Bubble (LB), within which most of the ISM is fully ionized.
 - A. By chance, the Sun lies within a small, partially neutral cloud (LIC=Local Interstellar Cloud) within the LB, so it and many very nearby stars are surrounded by neutrals and have detectable astrospheres.
 - B. But beyond 10 pc, the astrosphere detection fraction plunges dramatically, due to most of the ISM being ionized.
- II. Instrumental difficulties
 - A. Detection requires high-res UV spectroscopy (e.g. HST/STIS or HST/GHRS). Once HST is gone, that will be it for this wind detection method for the foreseeable future.
 - B. HST/STIS unavailable from 2004-2009.
 - C. HST/COS installed in 2009. This means much less use of STIS/E140M, and fewer usable Lyman-α spectra being added to the HST archives.

Is Radio the Future of Stellar Wind Detection?

Below are recent VLA/ALMA constraints from Fichtinger et al. (2017, A&A, 599, A127)

Exoplanets (see other talks this conference!)

SUMMARY

- Currently the only way to detect the winds of solar-like stars is through astrospheric Ly α absorption observed by HST.
- Analysis of the astrospheric absorption suggests that for solar-like GK dwarfs, mass loss and activity are correlated such that $M \propto F_x^{1.34\pm0.18}$.
- However, this relation does not extend to high activity levels ($F_X > 10^6$ ergs cm⁻² s⁻¹), possibly indicating a fundamental change in magnetic structure for more active stars.
- The mass-loss/activity relation described above suggests that mass loss decreases with time as $\dot{M} \propto t^{-2.33\pm0.55}$. However, the apparent high activity cutoff means that this mass loss evolution law doesn't extend to times earlier than t~0.7 Gyr.
- Despite the higher mass loss rates predicted for the young Sun by our mass loss evolution law, the total mass lost by the Sun in its lifetime is still insignificant.
- The existence of generally stronger winds at younger stellar ages makes it more likely that solar/stellar wind erosion plays an important role in the evolution of planetary atmospheres.