Transient Mass Loss in Active Stars and Observation Methods

Michael Crosley Rachel Osten

Outline

- Exoplanets and Habitability Concerns
- Coronal Mass Ejections
 - Traditional Detection Methods
 - CME-Flare and Solar-Stellar Connections
- Type II Radio Burst
 - Solar Example
 - Modeling and concerns
- Pretend the Sun is a Star
 - Multi-wavelength analysis and initial results
- LOFAR
 - Results and Additional Considerations

Habitable Zone

Coronal Mass Ejections (CME)

LASCO C3 (4-30 R_{\odot}) Image of a solar CME

- M > 10¹³ kg
- V ~ 100 3000 km/s
- 1-5 times a day

Solar vs. Astronomical Coronagraphs

Mawet et al. (2012)

Harrison et al. (2005) specs for STEREO coronagraphs

Eruptive Events

Observational Signature	Sun	Stars*
Flare	\checkmark	\checkmark
Nonthermal Hard X-ray Emission	\checkmark	?
Incoherent Radio Emission	\checkmark	\checkmark
Coherent Radio Emission, m-dm-cm	\checkmark	\checkmark
FUV Emission Lines (transition region)	\checkmark	\checkmark
Hot Blackbody Optical-UV	\checkmark	\checkmark
Coronal Emission Lines and Continuum	\checkmark	\checkmark
Optical/UV Chromospheric Emission Lines	√	\checkmark
Coronal Mass Ejection	✓	?
Radio Type II Burst	√	?
High Velocity Outflows from Escaping Material	\checkmark	?
Scintillation of Background Radio Sources	\checkmark	?
Coronal Dimming's	\checkmark	?
NH Increases in X-Ray Flare Spectra	?	?
Pre-flare dips prior to Impulsive Phase	?	?
Effects of CMEs on Stellar Environment	✓	?
Flare/CME Connections	√	?

Reference is Osten 2017, in Impacts of Exoplanetary Space Weather on Climate and Habitability of Terrestrial Type Exoplanets (in prep.)

CME Connections to Flares (solar)

$$\frac{1}{2}M_{CME}v^2 = \frac{E_{rad}}{\epsilon f}$$

Osten & Wolk 2015, based on Emslie et al. 2012 and Drake et al. 2013

 $M_{CME} = K_M E_{GOES}^{\gamma}$

Aarnio et al. 2012 Drake et al. 2013

Low Freq. (16.5 – 33.0 MHz) Bursts on AD Leo

Konovalenko et al. (2012)

Solar Type II Burst

Feb. 13, 2011

Description of the Type II burst

$$v_A = 2.03 \times 10^{11} \frac{B}{\sqrt{n}}$$

au an ah an

$$u_p = \sqrt{rac{ne^2}{\epsilon_0 m_e}}$$

1.

$$\frac{d\nu}{dt} = \frac{\partial\nu}{\partial n}\frac{\partial n}{\partial h}\frac{\partial s}{\partial s}\frac{\partial t}{\partial t}$$
$$= \left(\frac{\nu}{2n}\right)\left(-\frac{n}{H_0}\right)(\cos\theta)(v_s) = -\frac{\nu v_s \cos\theta}{2H_0}$$

CME Mass from Flare Energy

Connecting CMEs and Flares

Empirical Relation (Aarnio 20011, Drake 2013)

 $M_{CME} = AE^{\gamma}$

 Energy Equipartion (Osten, Wolk 2015)

$$\frac{1}{2}M_{CME}v^2 = \frac{E_{GOES}}{\epsilon f_{GOES}}$$

$$E_{GOES} = \left[\frac{A\epsilon v^2}{2}f_{GOES}\right]^{\frac{1}{1-\gamma}}$$
$$v = \sqrt{\frac{2}{A\epsilon f_{GOES}}}(E_{GOES})^{\frac{1-\gamma}{2}}$$

Solar Comparison

The criteria used for data selection:

- 1. Flare is M or X-class
 - Peak flux above 10^{-5} or 10^{-4} W/m²
- 2. Associated CME observed at LASCO
- 3. The CME had a type II burst associated to it

Listed as `poor' in the SOHO/LASCO catalog

Non-exponential shape

Multiple signals, but chose the exponential shaped event.

Barometric Model

Mass

Kinetic Energy

LOw Frequency ARray (LOFAR)

- LBA 10-90 MHz
- HBA 110-190 MHz
- Beam-Formed Mode
 - Combine collecting area into coherent `array beams'
 - Correct for geometric and instrumental time an phase delays for pointing
 - Restricted FoV, but full cumulative sensitivity of the combined stations
 - 5.12µs time resolution (van Haarlem et al. 2013)
 - 0.763-195 kHz frequency resolution (van Haarlem et al. 2013)
 - On and Off beam observation mode

YZ Canis Minors (CMi)

- 5.93 pc away (Perryman et al. 1997)
- 0.34 M_☉ (Lim et al. 1987)
- ~0.36 R_☉ (Mullan et al. 1992)
- B at flare sites between B = 50 100G (Raassen et al. 2007)
- n of 3x10¹⁰ cm⁻³ for quiescent state to < 5x10¹² for hotter plasma (Ness et al. 2004)
 - expect bursts between ~1500 -10 MHz
- Coronal T of 10⁷ K (Dupree et al. 1993)
- 0.4 flares/hour with energies above U-band energy of 5 x 10³¹ (Lacy et al. 1976)
- Low frequency (1500 300 MHz) microwave events observed (Kundu & Shevgaonkar 1988)

What Can We Expect?

Crosley et al. 2016

LBA Example

Measuring Drift Rate

Crosley et al. 2016

Geometric Considerations

- On Sun, preferentially shock towards base of corona
- Susino et al. 2015 found an example solar CME which was fully super Alfvénic at 4 solar radii

 $S_{\nu} \propto \frac{\nu^2}{c^2} \int T_b d\Omega$

Byrne 2012

Observational Uncertainties

Radio Source Fraction of Stellar Surface

$$S_{\nu} \propto \frac{\nu^2}{c^2} \int T_b d\Omega$$

Crosley et al. 2016

Moving Forward

- 60 Hours of EQ Peg Observations
 - Partial multi-wavelength observations
- Pursue large field surveys?
- More sensitive Observatories to push limits further

• Thank you!