Transient Mass Loss in Active Stars and Observation Methods

Michael Crosley
Rachel Osten
Outline

• Exoplanets and Habitability Concerns
• Coronal Mass Ejections
 • Traditional Detection Methods
 • CME-Flare and Solar-Stellar Connections
• Type II Radio Burst
 • Solar Example
 • Modeling and concerns
• Pretend the Sun is a Star
 • Multi-wavelength analysis and initial results
• LOFAR
 • Results and Additional Considerations
Habitable Zone

Stellar mass (relative to Sun)

Radius of orbit relative to Earth's

Habitable Zone

Mars

Earth

Venus
Coronal Mass Ejections (CME)

LASCO C3 (4-30 R_\odot) Image of a solar CME

- $M > 10^{13}$ kg
- $V \sim 100 - 3000$ km/s
- 1-5 times a day
Solar vs. Astronomical Coronagraphs

Harrison et al. (2005) specs for STEREO coronagraphs

Stellar CME at 2 R* at 5 pc: Separation of 0.5 mas = 0.0005 as.
Eruptive Events

<table>
<thead>
<tr>
<th>Observational Signature</th>
<th>Sun</th>
<th>Stars*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nonthermal Hard X-ray Emission</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Incoherent Radio Emission</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coherent Radio Emission, m-dm-cm</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FUV Emission Lines (transition region)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hot Blackbody Optical-UV</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coronal Emission Lines and Continuum</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Optical/UV Chromospheric Emission Lines</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Coronal Mass Ejection</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Radio Type II Burst</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>High Velocity Outflows from Escaping Material</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Scintillation of Background Radio Sources</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Coronal Dimming's</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>NH Increases in X-Ray Flare Spectra</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Pre-flare dips prior to Impulsive Phase</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Effects of CMEs on Stellar Environment</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Flare/CME Connections</td>
<td>✓</td>
<td>?</td>
</tr>
</tbody>
</table>

Reference is Osten 2017, in **Impacts of Exoplanetary Space Weather on Climate and Habitability of Terrestrial Type Exoplanets** (in prep.)
CME Connections to Flares (solar)

![Graphs showing CME association rate vs. Fp, Ft, and T.]

\[\frac{1}{2} M_{CME} v^2 = \frac{E_{rad}}{\epsilon_f} \]

\[M_{CME} = K_M E_{GOES}^\gamma \]

Osten & Wolk 2015, based on Emslie et al. 2012 and Drake et al. 2013

Aarnio et al. 2012
Drake et al. 2013

Yashiro et. al 2006
Low Freq. (16.5 – 33.0 MHz)
Bursts on AD Leo

Konovalenko et al. (2012)
Solar Type II Burst

Feb. 13, 2011
Description of the Type II burst

\[\nu_A = 2.03 \times 10^{11} \frac{B}{\sqrt{n}} \]

\[\nu_p = \sqrt{\frac{ne^2}{\varepsilon_0 m_e}} \]

\[\frac{d\nu}{dt} = \frac{\partial \nu}{\partial n} \frac{\partial n}{\partial h} \frac{\partial h}{\partial s} \frac{\partial s}{\partial t} \]

\[= \left(\frac{\nu}{2n} \right) \left(-\frac{n}{H_0} \right) (\cos \theta) (\nu_s) = -\frac{\nu \nu_s \cos \theta}{2H_0} \]
CME Mass from Flare Energy

\[\text{Implied CME mass (g)} \]

\[\log_{10} \text{X-ray Flare Energy (erg)} \]

- Aarnio et al. (2011)
- Drake et al. (2013)
Connecting CMEs and Flares

- Empirical Relation (Aarnio 20011, Drake 2013)

\[M_{CME} = AE^\gamma \]

- Energy Equipartion (Osten, Wolk 2015)

\[\frac{1}{2} M_{CME} v^2 = \frac{E_{GOES}}{\epsilon f_{GOES}} \]

\[E_{GOES} = \left[\frac{A \epsilon v^2}{2} f_{GOES} \right]^{\frac{1}{1-\gamma}} \]

\[v = \sqrt{\frac{2}{A \epsilon f_{GOES}}} (E_{GOES})^{\frac{1-\gamma}{2}} \]
Solar Comparison

The criteria used for data selection:

1. Flare is M or X-class
 • Peak flux above 10^{-5} or 10^{-4} W/m²
2. Associated CME observed at LASCO
3. The CME had a type II burst associated to it

Listed as `poor' in the SOHO/LASCO catalog
Non-exponential shape
Multiple signals, but chose the exponential shaped event.
Barometric Model

Crosley et al. 2017, submitted
Velocity

\[\frac{d\nu}{dt} = -\frac{\nu v_s \cos\theta}{2H_0} \]

Crosley et al. 2017, submitted
Comparing Vel. \[v = \sqrt{\frac{2}{A \varepsilon f_{GOES}}} (E_{GOES})^{\frac{1-\gamma}{2}} \]
Mass

Crosley et al. 2017, submitted
Comparing Mass

\(\frac{1}{2} M_{CME} v^2 = \frac{E_{GOES}}{\epsilon f_{GOES}} \)

\(M_{CME} = A E^\gamma \)

Crosley et al. 2017, submitted
Kinetic Energy

Crosley et al. 2017, submitted
Comparing KE

\[\frac{1}{2} M_{CME} v^2 = \frac{E_{GOES}}{\epsilon f_{GOES}} \]

Crosley et al. 2017, submitted
Energy

\[E_{\text{GOES}} = \left[\frac{A \epsilon v^2}{2} f_{\text{GOES}} \right] \frac{1}{1-\gamma} \]
LOw Frequency ARray (LOFAR)

• LBA 10-90 MHz
• HBA 110-190 MHz
• Beam-Formed Mode
 • Combine collecting area into coherent ‘array beams’
 • Correct for geometric and instrumental time an phase delays for pointing
 • Restricted FoV, but full cumulative sensitivity of the combined stations
 • 5.12μs time resolution (van Haarlem et al. 2013)
 • 0.763-195 kHz frequency resolution (van Haarlem et al. 2013)
 • On and Off beam observation mode
YZ Canis Minors (CMi)

- 5.93 pc away (Perryman et al. 1997)
- $0.34 M_\odot$ (Lim et al. 1987)
- $\sim0.36 R_\odot$ (Mullan et al. 1992)
- B at flare sites between $B = 50 – 100G$ (Raassen et al. 2007)
- n of 3×10^{10} cm$^{-3}$ for quiescent state to $< 5 \times 10^{12}$ for hotter plasma (Ness et al. 2004)
 - expect bursts between $\sim1500 - 10$ MHz
- Coronal T of 10^7 K (Dupree et al. 1993)
- 0.4 flares/hour with energies above U-band energy of 5×10^{31} (Lacy et al. 1976)
- Low frequency (1500 – 300 MHz) microwave events observed (Kundu & Shevgaonkar 1988)
What Can We Expect?

Crosley et al. 2016
LBA Example

Crosley et al. 2016
Measuring Drift Rate

Crosley et al. 2016
Geometric Considerations

• On Sun, preferentially shock towards base of corona
• Susino et al. 2015 found an example solar CME which was fully super Alfvénic at 4 solar radii

\[S_\nu \propto \frac{\nu^2}{c^2} \int T_b \, d\Omega \]

Byrne 2012
Observational Uncertainties

\[S_\nu \propto \frac{\nu^2}{c^2} \int T_b d\Omega \]

Crosley et al. 2016
Moving Forward

- 60 Hours of EQ Peg Observations
 - Partial multi-wavelength observations
- Pursue large field surveys?
- More sensitive Observatories to push limits further

- Thank you!