DARK MATTER AT THE CENTERS OF GALAXIES

DAVID MERRITT

“PROBES OF DARK MATTER ON GALAXY SCALES”

MONTEREY, CA

JULY 2013
Detection of Dark Matter

Colliders

Direct Detection

Indirect Detection
The flux can be broken into two pieces:

\[F_\gamma(E) \propto \frac{dN_\gamma}{dE_\gamma} \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \times \int_{\text{los}} \rho^2 dl \]

In the case of WIMPs, the self-annihilation cross section is revealed by the present-day mass density:

\[\langle \sigma v \rangle \approx 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}, \]

nearly independent of \(m_\chi \).

Steigman & el. (2012)
The flux can be broken into two pieces:

$$F_\gamma(E) \propto \frac{dN_\gamma}{dE_\gamma} \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \times \int_{\text{los}} \rho^2 dl$$
Look for “amplifiers”, i.e. regions where dark matter accumulates
(galactic center, sun, earth...)

$F_\gamma \propto \rho^2$

Fornasa & Bertone (2008)
After removal of point sources and cosmic-ray photons, the Fermi/LAT flux includes an extended component centered on Sgr A* at energies > 300 MeV.

Interpreted as photons from dark-matter annihilations:

- The DM density must increase faster than r^{-1} toward the center
- $\langle \sigma v \rangle$ is consistent with the “thermal relic” value 3×10^{-26} cm3 s$^{-1}$
- 7 GeV $< m_\chi < 45$ GeV
Analysis of the spectrum yields constraints on $\langle \sigma v \rangle$, m_χ:

Abazajian & Manoj Kaplinghat (2011)
Supermassive Black Holes ...

- exist, with predictable masses, in bulges bigger than ~ the Milky Way's

- may exist, with uncertain masses, in some smaller galaxies (e.g. AGN)
Gravitational radius: \[r_g = \frac{GM_\bullet}{c^2} \]
\[\approx 5 \times 10^{-8} \left(\frac{M_\bullet}{10^6 M_\odot} \right) \text{ pc} \]

(Gravitational) influence radius:
\[r_h = \frac{GM_\bullet}{\sigma^2} \]
\[\approx 0.5 \left(\frac{M_\bullet}{10^6 M_\odot} \right) \left(\frac{\sigma}{100 \text{ km s}^{-1}} \right)^{-2} \text{ pc} \]

(Rotational) influence radius:
\[r_K \approx 2 \times 10^{-3} \chi^{2/5} \left(\frac{M_\bullet}{10^6 M_\odot} \right) \left(\frac{m_\star}{M_\odot} \right)^{-1/5} \text{ pc} \]
Q: What does one expect for the density profile of DM (or stars, ...) around a SBH?

A: Pretty much anything!

If the velocity distribution is isotropic, then $\rho(r)$ must increase at least as steeply as $\rho \propto r^{-1/2}$ at $r \lesssim r_h$.

However, there are galaxies in which the stellar density profile is flatter than $\rho \propto r^{-1/2}$ ("cores"), implying an anisotropic velocity distribution.
A black hole that grows in a spherically-symmetric way pulls in matter around it:

causing the density to increase—a “density spike.”

If the growth is slow (“adiabatic”), the initial and final density profiles are uniquely related.
“Adiabatic Growth” Model

Invoking:

i) Liouville’s theorem ($f_f = f_i$)

ii) adiabatic invariance ($I = \text{const.}$)

the relation between initial and final phase-space densities is

$$f_f(E_f, L) = f_i(E_i, L)$$

$$\approx f_f(E_f)$$

where E_f is related to E_i through the condition

$$I_f(E_f, L) = I_i(E_i, L) \quad \text{and} \quad E_f = \frac{v^2}{2} - \frac{GM_*}{r}.$$
Peebles (1972) assumed \(f_i(E_i) = \text{const.} \)
(e.g. the core of an isothermal sphere)

\[\therefore f_f(E_f) = \text{const.} \]

A constant \(f \) in a \(1/r \) potential implies

\[
\rho(r) = \int f \, d^3v = f_0 \int_0^{\sqrt{GM \cdot /r}} 4\pi v^2 \, dv
\]

\[\propto r^{-3/2}, \quad \text{a “cusp”} \]
A “Spike” around the Black Hole?

But if the initial density profile is a **power-law**:

$$\rho_i(r) \propto r^{-\gamma_0}, \quad f_i(E_i) \propto E_i^{-\beta}, \quad \beta = \frac{6 - \gamma_0}{2(2 - \gamma_0)}$$

the final density is (almost) a power-law:

$$\rho_f(r) \propto r^{-\gamma}, \quad \gamma = 2 + \frac{1}{4 - \gamma_0}$$

$$0 \leq \gamma_0 \leq 2, \quad 2.25 \leq \gamma \leq 2.5.$$
The (initial) central density can be expanded:

\[\rho_i(r) = \rho_0 \times \left(1 + C_1 r + C_2 r^2 + \ldots \right) \]

For the isothermal sphere, \(C_1 = 0 \).

For the power-law model, \(C_1 \neq 0 \), even when \(\gamma_0 = 0 \).

In fact, the central phase-space density diverges:

\[f_i(E) \propto \left[E - \Phi(0) \right]^{-1}. \]

Quinlan & al. (2005)
But: was the initial density a power-law?

A better fit appears to be

\[\frac{d \ln \rho}{d \ln r} = -2 \left(\frac{r}{r_0} \right)^\alpha \]

i.e.

\[\rho(r) \propto \exp \left(-Ar^\alpha \right) \]

the "Einasto model."

Navarro & al. (2004)
D. M. & al. (2005)
Stadel & al. (2009)
Replacing the NFW halo by an Einasto halo has two consequences.

1. The (initial) density near the SBH is reduced, by a factor

\[
\frac{\rho_{\text{Einasto}}}{\rho_{\text{NFW}}} \approx \frac{e^{2/\alpha}}{4} \frac{r_\bullet}{r_{-2}}
\]

\[
\frac{r_\bullet}{r_{-2}} \approx \frac{(1 - 100) \text{ pc}}{(10 - 100) \text{ kpc}} \quad \approx 10^{-5} - 10^{-2}
\]

\[
\therefore \quad 0.01 \lesssim \left| \frac{\rho_{\text{Einasto}}}{\rho_{\text{NFW}}} \right|_{r_\bullet} \lesssim 1
\]
2. The Einasto model has

\[\rho(r) = \rho_0 \exp(-Ar^\alpha) \]

\[= \rho_0 \times (1 + C_1 r^\alpha + C_2 r^{2\alpha} + \ldots) \]

and its central phase-space density diverges.

But.... no one has worked out the implications for the adiabatic-growth model! (yet)
These results for “collisionless” cusps can be greatly modified by “collisional” effects, including:

1. Close interaction of DM particles with a binary SBH during a merger (“slingshot ejection”)

2. Close interaction of DM with stars (“scattering”)

3. DM-DM interactions (“self-annihilations”)

Self-Annihilations

The annihilation rate per DM particle is

$$\Gamma = n \langle \sigma v \rangle$$

∴ The DM density drops at a rate

$$\dot{\rho} = m_\chi \dot{n} = -m_\chi n \Gamma = -\frac{\rho^2}{m_\chi} \langle \sigma v \rangle$$

Setting $\dot{\rho} \times t_H \approx -\rho$, $t_H \approx 10$ Gyr, implies a maximum ρ:

$$\rho \lesssim \frac{m_\chi}{\langle \sigma v \rangle t_H}$$

$$\lesssim 3 \times 10^9 \frac{\text{GeV}}{\text{cm}^3} \left(\frac{m_\chi}{10 \text{ GeV}} \right) \left(\frac{\langle \sigma v \rangle}{10^{-26} \text{cm}^3 \text{s}^{-1}} \right)^{-1} \left(\frac{t_H}{10 \text{ Gyr}} \right)$$
Halo compressed by baryons (bulge)
Halo compressed by black hole ("spike")
These results for “collisionless” cusps can be greatly modified by “collisional” effects, including:

1. Close interaction of DM particles with a binary SBH during a merger (“slingshot ejection”)

2. Close interaction of DM with stars (“scattering”)

Galaxies merge

Binary SBH forms

Binary *ejects stars/DM* via the “gravitational slingshot”
Evidence for “Cusp Destruction”

The brightest galaxies **always** have central cores:
Observed “mass deficits” are:

\[1 \, M_\odot \lesssim M_{\text{def}} \lesssim 2 \, M_\odot , \]

consistent with the predictions of the merger model.

N-body merger simulations, of haloes with initial “spikes”.

A, B : $m_1/m_2 = 1:1$

C : $m_1/m_2 = 1:3$

...

F : $m_1/m_2 = 1:10$

D. M. et al. (2002)

Destruction of DM Spikes by Binary SBHs
N-body merger simulations, of haloes with initial “spikes”.

\[
\frac{d\Phi_\gamma}{d\Omega} = \sum_i N^i_\gamma \frac{\sigma_i v}{4\pi M^2_\chi} \int_\psi \rho^2 dl
\]

\[
J(\psi) = \frac{1}{8.5 \text{kpc}} \left(\frac{1}{0.3 \text{GeV/cm}^3} \right)^2 \int_\psi \rho^2 dl
\]

D. M. et al. (2002)
These results for “collisionless” cusps can be greatly modified by “collisional” effects, including:

1. Close interaction of DM particles with a binary SBH during a merger (“slingshot ejection”)

2. Close interaction of DM with stars (“scattering”)

Scattering of DM by Stars

Gravitational interactions transfer energy from stars (heavy) to DM particles (light).

A steady-state is reached when the phase-space density of the DM is constant.

Near the SBH, the corresponding configuration-space density is

$$\rho(r) = \int f d^3v = f_0 \int_0^{\sqrt{GM*}/r} 4\pi v^2 dv \propto r^{-3/2}$$

Cusp “Regeneration”

stars

\[\rho \propto r^{-7/4} \]

DM

\[\rho \propto r^{-3/2} \]

Q: Which galaxies are likely to have short, central relaxation times?

A: Galaxies with nuclear star clusters (NSCs)
Half-mass relaxation times:

\[t_{rh} \approx 2 \times 10^5 \left(\frac{r_{eff} \text{ (pc)}}{\text{yr}} \right)^{3/2} \left(\frac{N}{\text{pc}} \right)^{1/2} \left(\frac{m_*/M_\odot}{\text{yr}} \right)^{1/2} \]

of NSCs fall below 10 Gyr in galaxies with \(-M_B \lesssim 17\).

At least some NSCs also host SBHs (e.g. N4395), although the fraction is uncertain. Seth & al. (2008)
Half-mass relaxation times:

\[t_{rh} \approx 2 \times 10^5 \frac{[r_{\text{eff}} \text{ (pc)}]^{3/2} N^{1/2}}{[m_*/M_\odot]^{1/2}} \text{ yr} \]

of NSCs fall below 10 Gyr in galaxies with \(-M_B \lesssim 17\).

In the Galactic center, the (local) relaxation time appears to be \(> 10 \) Gyr everywhere.

D. M. (2009)
Cusp Observability

Would a relatively weak, $\rho \propto r^{-3/2}$ cusp imply a substantial increase in the annihilation signal?

$$\int \rho(r)^2 r^2 dr = \left\{ \int_{r<r_h} + \int_{r>r_h} \right\} \rho(r)^2 r^2 dr$$

$r < r_h$:
$$\int_{r<r_h} \rho(r)^2 r^2 dr \approx 3 \rho(r_h)^2 r_h^3$$

$r > r_h$:
$$\int_{r>r_h} \rho(r)^2 r^2 dr$$

depends on (i) the halo model; (ii) how much of the galaxy is imaged.
Relative contribution to annihilation signal from DM at $r < r_h$ vs. $r > r_h$ in various halo models.

\[D. M., Harfst & Bertone (2007) \]

\[\therefore \text{Only for the Einasto halos is there a significant increase due to the } \rho \propto r^{-3/2} \text{ cusp.} \]
What About the Milky Way?

- Relaxation time < 10 Gyr
- May never have experienced “major” merger

∴ Try models with initial “spikes”; see how they evolve, due to:

i) self-annihilations
ii) star-DM scattering
iii) capture by SBH
\[J \propto \int \rho^2 \, dl \]

Density

- **scattering only**
- **annihilations only**
- **both**

Vasiliev & Zelnikov (2008)
Conclusions

1. All factors mitigate against high DM densities near the centers of bright galaxies.

2. Fainter galaxies -- if they contain NSCs & SBHs -- can have short enough relaxation times for $r^{-3/2}$ cusps to spontaneously regenerate.

3. For certain halo models, the regenerated cusps imply substantially larger DM annihilation signals.

4. Particle physicists who are modelling γ rays from the Galactic Center should adopt the dynamical models!