CFHTLenS: The Environmental Dependence of Galaxy Halo Masses from Weak Lensing

Bryan Gillis
Gillis, Hudson, Erben et al. (2013)
In Collaboration With...

Supervisor:
Mike Hudson

CFHTLenS Team Members:

<table>
<thead>
<tr>
<th>Thomas Erben</th>
<th>Catherine Heymans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendrik Hildebrandt</td>
<td>Henk Hoekstra</td>
</tr>
<tr>
<td>Thomas D. Kitching</td>
<td>Yannick Mellier</td>
</tr>
<tr>
<td>Lance Miller</td>
<td>Ludovic van Waerbeke</td>
</tr>
<tr>
<td>Christopher Bonnett</td>
<td>Jean Coupon</td>
</tr>
<tr>
<td>Liping Fu</td>
<td>Barnaby T.P. Rowe</td>
</tr>
<tr>
<td>Tim Schrabback</td>
<td>Elisabetta Semboloni</td>
</tr>
<tr>
<td>Edo van Uitert</td>
<td>Malin Velander</td>
</tr>
</tbody>
</table>

Simulated Catalogues Provided by:

| Stefan Hilbert | Jan Hartlap |
Field Galaxies, Groups, and Clusters

Field Galaxies

Unstripped, like field galaxies?

Group Galaxies

Cluster Galaxies

Stripped, like cluster galaxies?
Outline

- Data
- Methods and Models
- Weak Lensing Analysis
- Outlook
- Concluding Remarks
Outline

• Data
 • CFHTLenS Catalogues
 • Simulated Catalogues

• Methods and Models

• Weak Lensing Analysis

• Outlook

• Concluding Remarks
CFHTLenS Catalogues

- 125 deg2 of high-quality shape data to $i' < 24.7$ (11 sources/arcmin2)
- Photo-zs available for full survey, errors of ~ 0.04
- Galaxies with $0.2 < z_{\text{phot}} < 0.8$ divided into high- and low- density environment (HDE and LDE) lens catalogues

Simulated Catalogues

- Use semi-analytic galaxy catalogue prepared by Stefan Hilbert *et al.* from Millennium Simulation
- Use 64 deg2 of simulated catalogues, and cut lens catalogues by density as with CFHTLenS data
- Dark matter distributions generated for scenarios with and without tidal stripping in all groups
- Ray-tracing is performed on source catalogues to estimate shears for each scenario; no shape noise is applied to sources
Outline

• Data

• **Methods and Models**
 • Determining environment
 • Assumptions
 • Lensing signal model

• Weak Lensing Analysis

• Outlook

• Concluding Remarks
Determining Environment

- **Photo-z Probability Peaks (P3) Method**
 - Galaxies sorted by S/N in 3D overdensity
 - Only galaxy counts used; method is colourblind
 - Can study tidal stripping of satellites by comparing samples:
 - S/N > 2 (HDE) \(\Rightarrow \) \(\sim \)60% satellites
 - S/N < 0 (LDE) \(\Rightarrow \) \(\sim \)20% satellites

- Illustration of P3 Method on a simulated field at \(z \sim 0.3 \)
 - Galaxies are dots coloured by S/N, groups marked by circles
 - Group galaxies tend to have S/N > 2
Assumptions

- Groups and galaxies have truncated NFW halos
- A fraction f_{sat} of galaxies in the HDE sample are in groups, the rest are in the field. No LDE galaxies are in groups
- Galaxies within groups are distributed by an NFW profile with concentration $c \sim 2.5$
- In our “Stripping” scenario, galaxies are stripped depending on their distance from group centres (typically 40% mass retained)
Lensing Signal Model

- **LDE Galaxies**: \(\Delta \Sigma = \Delta \Sigma_{1h} + \Delta \Sigma_{UD} \)
 - "One-halo" term
 Use formula for truncated NFW from Baltz et al. (2009)
 - "Underdensity" term
 (ignored by fitting only to low radii)

- **HDE Galaxies**: \(\Delta \Sigma = \Delta \Sigma_{1h} + f_{sat} \Delta \Sigma_{OG} + \Delta \Sigma_{2h} \)
 - "One-halo" term
 Use formula for truncated NFW from Baltz et al. (2009)
 - "Two-halo" term
 (ignored; dwarfed by "offset group" term)
 - "Offset Group" term
 Influence of groups on their satellites' lensing signals

- **Free parameters**: \(M_{sat}, M_{group}, \Sigma_t \) (selection effect)
Outline

- Data
- Methods and Models
- Weak Lensing Analysis
 - Conclusions from Simulations
 - CFHTLenS Results
- Outlook
- Concluding Remarks
Conclusions from Simulations

- HDE selection covers wide host mass range, from groups to clusters.
- Lensing signal model fits simulated lensing signal well, but not perfectly.
- Simulations predict slight overprediction of HDE one-halo mass by \(\sim 10\% \).
- Stripping only decreases HDE one-halo mass for low mass \((M_{\text{stellar}} < 10^{10.5} M_{\text{sun}})\) galaxies.
CFHTLenS Results

- HDE one-halo mass found to be less than LDE mass at 2.9\(\sigma\) confidence
- Reject “No Stripping” scenario at 4.1\(\sigma\), nearly reject “Stripping” scenario at 1.8\(\sigma\)
- Implies halos in dense environments (groups) are less massive
- Systematic errors analyzed; not likely to cause a false positive detection here
Outline

● Data
● Methods and Models
● Weak Lensing Analysis
● Outlook
 ● Implications
 ● Other surveys
● Concluding Remarks
Implications

- Galaxies are likely stripped in groups as well as clusters
- HDE and LDE samples have red fractions differing by no more than 10%, meaning it's unlikely that stripping is only experienced by red galaxies
- Stripping may be stronger than predicted in simulations, judging by the near-rejection of our simulated “Stripping” scenario
- Further data will be needed to form firmer conclusions
Other Surveys

• Potentially-useful data is already available from:
 • SDSS
 • CFHT Stripe 82 Survey
 • Overlap of GAMA-II spectro-z catalog and CFHTLenS

• Future surveys will provide a wealth of data:
 • KiDS, including overlap with GAMA-I spectro-z catalog
 • DES, Euclid, LSST from 2018 onward
Concluding Remarks

Field Galaxies

Unstripped, like field galaxies?

Disfavored by our results

Group Galaxies

Stripped, like cluster galaxies?

Cluster Galaxies

Consistent, but questions remain